
PhD in
Biotechnology

“Development and application of novel
computational approaches for the

characterization of cancer subtypes”

PhD Candidate:

Irene Pérez Díez

PhD Supervisors:

Francisco García García

María de la Iglesia Vayá

UPV Supervisor:

Máximo Ibo Galindo Orozco

April 2025





Development and application of novel computational approaches
for the characterization of cancer subtypes

Keywords:

cancer subtypes, meta-analysis, transcriptomics, lung adenocarcinoma, pancreatic

ductal adenocarcinoma, cancer heterogeneity, biomarkers, molecular profile, func-

tional profile, prognosis

Abstract:

Cancer remains a global health crisis, demanding further research to understand its

molecular basis. Even within the same cancer type, inter-patient variability is an ob-

stacle to disease understanding and therapy development. Cancer subtyping, there-

fore, becomes essential to address cancer heterogeneity. One promising approach to

unravel this heterogeneity is through cancer subtyping based on the transcriptomic

landscape of patients. Through gene expression profiling, researchers can identify

groups of patients that may represent distinct cancer subtypes with unique biolog-

ical characteristics, response to therapies and clinical outcomes. However, this ap-

proach has its major challenge in requiring large sample sizes, which are crucial for

the identification of meaningful subtypes.

This is where transcriptomics data meta-analysis emerges as a powerful statisti-

cal tool. By systematically collecting and re-analyzing data from public repositories,

researchers can integrate sample sizes across multiple studies, overcoming the lim-

itations of individual datasets. This approach allows for the identification of subtle

yet critical differences in gene expression patterns that might be missed in smaller

cohorts.

In this thesis, we explored cancer heterogeneity in two distinct contexts: lung

adenocarcinoma and pancreatic ductal adenocarcinoma. We used an in-silico ap-

proach, leveraging published data through meta-analysis, overcoming limitations

of individual studies, and driving novel discoveries. We have identified sex-specific

transcriptomic differences in lung adenocarcinoma, particularly in the immune sys-
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tem, purinergic signaling, and lipid metabolism pathways. We have also character-

ized the transcriptomic landscape of pancreatic ductal adenocarcinoma and its links

to patient survival, revealing two prognostic gene signatures associated with the

immune system and the extracellular matrix.
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Desenvolupament i aplicació de nous enfocaments computa-
cionals per a la caracterització de subtipus de càncer

Paraules clau:

subtipus de càncer, metaanàlisi, transcriptòmica, adenocarcinoma de pulmó, adeno-

carcinoma ductal pancreàtic, heterogeneïtat del càncer, biomarcadors, perfil molec-

ular, perfil funcional, pronòstic

Resum:

El càncer continua sent una crisi sanitària a nivell mundial, i es requereix més recerca

per a comprendre les seves bases moleculars. Fins i tot dins d’un mateix tipus de

càncer, la variabi-litat entre pacients és un obstacle per a la comprensió de la malal-

tia i el desenvolupament de teràpies. Per tant, la subtipificació dels diferents tipus de

càncer resulta essencial per a abordar la seva heterogeneïtat. Un enfocament prom-

etedor per a desentranyar aquesta heterogeneïtat és la subtipificació del càncer basat

en el context transcriptòmic dels pacients. Mitjançant perfils d’expressió gènica, els

investigadors poden identificar grups de pacients que poden representar diferents

subtipus de càncer amb característiques biològiques, resposta a teràpies i resultats

clínics únics. No obstant això, aquest enfocament representa un gran repte, ja que

requereix una gran grandària mostral, crucial per a la identificació de subtipus sig-

nificatius.

És ací on el metaanàlisi de dades transcriptòmiques emergeix com una potent

eina estadística. Mitjançant la recopilació sistemàtica i la reanàlisi de dades de repos-

itoris públics, els investigadors poden integrar grandàries mostrals de múltiples es-

tudis, superant les limitacions dels conjunts de dades individuals. Aquest enfoca-

ment permet identificar diferències subtils però crítiques en els patrons d’expressió

gènica que podrien passar desapercebudes en cohorts més petites.

En aquesta tesi, explorem l’heterogeneïtat del càncer en dos contextos diferents:

l’adenocar-cinoma de pulmó i l’adenocarcinoma ductal pancreàtic. Hem utilitzat un

enfocament in-silico, aprofitant les dades publicades mitjançant una estratègia de



metaanàlisi, superant les limitacions dels estudis individuals i impulsant nous de-

scobriments. Hem identificat diferències transcriptòmiques específiques del sexe

en l’adenocarcinoma de pulmó, en particular en les rutes del sistema immunitari,

la senyalització purinèrgica i el metabolisme lipídic. També hem caracteritzat el

paisatge transcriptómico de l’adenocarcinoma ductal pancreàtic i els seus vincles

amb la supervivència dels pacients, revelant dues signatures genètiques pronòs-

tiques associades amb el sistema immunitari i la matriu extracelul·lar.
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Desarrollo y aplicación de nuevos enfoques computacionales
para la caracterización de subtipos de cáncer

Palabras clave:

subtipos de cáncer, metaanálisis, transcriptómica, adenocarcinoma de pulmón, ade-

nocarcinoma ductal pancreático, heterogeneidad del cáncer, biomarcadores, perfil

molecular, perfil funcional, pronóstico

Resumen:

El cáncer sigue siendo una crisis sanitaria a nivel mundial, y se requiere más inves-

tigación para comprender sus bases moleculares. Incluso dentro de un mismo tipo

de cáncer, la variabilidad entre pacientes es un obstáculo para la comprensión de la

enfermedad y el desarrollo de terapias. Por tanto, la subtipificación de los distin-

tos tipos de cáncer resulta esencial para abordar su he-terogeneidad. Un enfoque

prometedor para desentrañar esta heterogeneidad es la subtipificación del cáncer

basado en el contexto transcriptómico de los pacientes. Mediante perfiles de expre-

sión génica, los investigadores pueden identificar grupos de pacientes que pueden

representar distintos subtipos de cáncer con características biológicas, respuesta a

terapias y resultados clínicos únicos. Sin embargo, este enfoque representa un gran

reto, ya que requiere un gran tamaño muestral, crucial para la identificación de sub-

tipos significativos.

Es aquí donde el metaanálisis de datos transcriptómicos emerge como una po-

tente herra-mienta estadística. Mediante la recopilación sistemática y el reanálisis

de datos de repositorios públicos, los investigadores pueden integrar tamaños mues-

trales de múltiples estudios, superando las limitaciones de los conjuntos de datos

individuales. Este enfoque permite identificar diferencias sutiles pero críticas en

los patrones de expresión génica que podrían pasar desapercibidas en cohortes más

pequeñas.

En esta tesis, exploramos la heterogeneidad del cáncer en dos contextos distin-

tos: el adenocarcinoma de pulmón y el adenocarcinoma ductal pancreático. Hemos



utilizado un enfoque in-silico, aprovechando los datos publicados mediante una es-

trategia de metaanálisis, superando las limitaciones de los estudios individuales e

impulsando nuevos descubrimientos. Hemos identificado diferencias transcriptómi-

cas específicas del sexo en el adenocarcinoma de pulmón, en particular en las rutas

del sistema inmunitario, la señalización purinérgica y el metabolismo lipídico. Tam-

bién hemos caracterizado el paisaje transcriptómico del adenocarcinoma ductal pan-

creático y sus vínculos con la supervivencia de los pacientes, revelando dos firmas

genéticas pronósticas asociadas con el sistema inmunitario y la matriz extracelular.
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“Magicians and scientists are, on the face of it, poles apart. Certainly, a

group of people who often dress strangely, live in a world of their own,

speak a specialized language and frequently make statements that

appear to be in flagrant breach of common sense have nothing in

common with a group of people who often dress strangely, speak a

specialized language, live in ... er ...”

Terry Pratchett

The Science of Discworld, 1999
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1.1. Overview of cancer subtyping 1

1.1 Overview of cancer subtyping

Cancer is a complex and heterogeneous disease comprising a wide range of malig-

nancies characterized by different biological properties and clinical behaviors. Glob-

ally, cancer is a leading cause of premature death [1], with incidence and mortality

rates varying across different cancer types [1, 2]. Even within the same cancer type,

cancer subtypes can exhibit different origin mechanisms and disease progression,

significantly impacting prognosis and survival. Cancer subtyping plays, therefore,

a fundamental role in categorizing tumors into subgroups based on specific molec-

ular, genetic, or clinical features. This approach is essential for understanding the

underlying mechanisms of tumorigenesis and the variations in treatment response

and patient outcomes.

Cancer subtypes are distinct subclasses or clusters within a specific cancer type

characterized by unique molecular or clinical signatures. Historically, several strate-

gies have been employed to classify and subtype cancers, mainly:

• Histological and Morphological analysis

• Tumor location and origin

• Molecular and Genetic Markers

• Gene Expression Profiling

• Immunophenotyping

• Clinical behavior and response to treatment

• Staging systems

High-throughput technologies can be used to subtype based on gene expres-

sion profiling, performing comprehensive gene expression analysis of tumors [3].

It enables the identification of differentially expressed genes that distinguish sub-

types, shedding light on dysregulated biological processes and molecular pathways.

Parker and colleagues [4] developed the PAM50 assay, one of the earliest applica-

tions of transcriptomics for classifying cancer subtypes based on gene expression.

Irene Pérez Díez 1



2 Chapter 1. Introduction

The authors used the microarray technology to measure the expression of 50 genes

and successfully classified breast cancer into four different subtypes: luminal A, lu-

minal B, HER2-enriched, and basal-like types. The PAM50 assay paved the way for

further gene expression-based tests, highlighting the potential of transcriptomics

for improved breast cancer subtyping.

Cancer subtyping offers several advantages in clinical practice and research,

enhancing our understanding of disease biology. Following the PAM50 example, by

classifying breast cancer into different intrinsic subtypes, practitioners could bet-

ter assess the risk of recurrence and survival rates for patients [4]. Diagnosis by

subtypes added significant prognostic and predictive information for patients and

helped assess the likelihood of efficacy from neoadjuvant chemotherapy. Conse-

quently, PAM50 became a foundational tool for breast cancer subtyping, providing

valuable prognostic and predictive information to guide treatment decisions and

improve patient outcomes. Furthermore, understanding the biology of each PAM50

subtype allowed researchers to develop novel targeted therapies for specific sub-

types. Thus, it is crucial in developing personalized medicine approaches, as it al-

lows the identification of biomarkers that can predict treatment responses and guide

therapeutic decisions [5, 6]. It can also lead to the discovery of novel therapeutic

targets by identifying subtype-specific vulnerabilities and dependencies on specific

pathways [7].

1.1.1 Sex as a biological variable in cancer subtyping

Historically, medical research has been centered on male physiology, with few stud-

ies considering this variable in their experimental design and analyses [8, 9]. Sex

is an essential modifier of disease via genetic, epigenetic, and hormonal regula-

tions [10], and cancer is not an exception. Generally speaking, non-reproductive

cancers are more frequently developed by males, who also exhibit shorter survival

times, even after adjusting for risk factors such as smoking or dietary habits. Sex

differences in cancer are thought to be related to genetic differences, the incom-

plete inactivation of the X chromosome in female individuals, the presence of Y

2
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chromosome-encoded oncogenes, and the chromatin remodeling effects of in-utero

testicular testosterone in male cells [8]. These mechanisms influence metabolism,

growth regulation, angiogenesis, and immunity, which are hallmarks of cancer [11].

For instance, significant sex differences in pathways related to glycolysis, fatty

acid, and bile acid metabolism have been found in some non-reproductive cancers

[12]. Glucose intake, an essential part of cellular proliferative growth, has a different

impact on men and women, with practices such as intermittent fasting correlated

with an increased incidence of liver [13] and colon [14] cancer in males but not in

females. Linked to lipid metabolism, males with obesity have disproportionately

high rates of colon and hematological cancers [15]. The excess of adipose tissue

is frequently associated with chronic low-grade inflammation, which can promote

cancer by driving DNA damage. In contrast, acute inflammatory responses can be

positive against cancer, with females having a more significant benefit from this

effect overall [12].

Furthermore, sex can also influence response to treatment. Sex-specific anal-

ysis to perform molecular subtyping has been proposed to help tailor treatment

to patients with glioblastomas and colon cancer [16, 17]. Integrating sex into the

treatment research design will positively impact other cancer types and is espe-

cially promising for discovering novel cancer immunotherapies [18]. Sex perspec-

tive should be included in further cancer research, as cancer studies are enhanced

by sex-specific targeting.

1.2 Lung adenocarcinoma

Lung cancer represents a significant public health challenge, accounting for the

highest cancer incidence and mortality worldwide [2]. Lung adenocarcinoma (LUAD),

a subtype of non-small cell lung carcinoma (NSCLC), accounts for more than 50% of

all lung cancer diagnoses, with an increasing frequency over time [19, 20]. It shows

a five-year survival rate of 26.3%, although this rate fluctuates, influenced by race,

sex, and tumor stage [21]. Furthermore, it is the most common subtype diagnosed
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in people who have never smoked [22], with incidence rates in non-smokers of 14.4

to 20.8 per 100,000 person-year in women and 4.8 to 13.7 per 100,000 person-year in

men [23].

LUAD usually evolves from the mucosal glands, and it is characterized by com-

plex genomic landscape, with numerous underlying genetic and epigenetic mecha-

nisms, characterizes LUAD. While mutations in TP53 and LRP1B genes are common

in NSCLC, the major disrupted signaling pathways in LUAD are RAS-MEK-ERK and

PIK3CA-MTOR, involving high rates of mutations in KRAS, EGFR, MET, and BRAF

genes. These are clinically relevant, as they are potentially targetable [24].

Several studies have studied the epidemiological differences in LUAD between

males and females. Females exhibit a higher predominance of LUAD and higher sur-

vival rates [20, 25, 26]. Furthermore, LUAD shows a more pronounced survival rate

difference between male and female lung adenocarcinoma patients when compared

to other tumor types [25]. Overall, the evidence suggests that sex has a significant

influence on LUAD.

1.3 Pancreatic ductal adenocarcinoma

Pancreatic cancer originates from any cellular types that compose the pancreatic

gland. It can affect any organ region, although it frequently originates from the

exocrine component’s ducts and is predominantly observed in the pancreatic head.

Pancreatic Ductal Adenocarcinoma (PDAC) is the prevailing subtype of pancreatic

cancer, accounting for over 80% of all diagnosed pancreatic neoplasms [2]. PDAC is

characterized by aggressive behavior, late diagnosis, and limited treatment options

[27]. This subtype has the lowest cancer survival rate (12%), and it is has become

the third leading cause of cancer-related deaths by 2023 [2].

PDAC arises from a complex interplay of ambient factors and genetic and epi-

genetic alterations contributing to disease progression. Multiple key signaling path-

ways are implicated in PDAC development and progression, including KRAS, TP53,

CDKN2A, and SMAD4 genes. These alterations disrupt cellular homeostasis, pro-

4
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mote tumor growth, and confer resistance to conventional therapies [28]. Further-

more, PDAC is characterized by an extensive desmoplastic reaction involving acti-

vating stromal cells, extracellular matrix deposition, and altered tumor microenvi-

ronment (TME). This fibrotic response creates a barrier to drug delivery and con-

tributes to the disease’s aggressive nature [29, 30].

1.4 Transcriptomics

Transcriptomics holds immense significance in modern biology and bioinformatics.

Genomics studies the static genetic composition of an organism, while transcrip-

tomics attempts to decode gene expression and delves into the dynamic spectrum of

messenger RNA molecules, known as the transcriptome. This transcriptome forms

a bridge between genotype and phenotype, which makes it a crucial intermediary

between the information encoded in the genes and the functionality of the proteins.

Transcriptomics techniques allow researchers to study gene expression pat-

terns, revealing which genes are actively transcribed and how their expression lev-

els change in response to environmental stimuli, developmental stages, and other

factors such as pathological states. This ability to monitor gene expression has

transformed our understanding of the molecular mechanisms underlying biologi-

cal phenomena.

1.4.1 High throughput technologies

Since the late 1990s, a series of technological innovations have transformed tran-

scriptomics and made it a widespread discipline. The contemporary transcriptomics

workhorse is RNA sequencing (RNA-seq), which uses high-throughput sequencing

to capture the whole transcriptome of an organism. However, despite their decline

since 2014, microarrays have been the main driving force in transcriptomics for most

of its history [31]. They make up a substantial portion of the data available in public

repositories for research use.
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Microarrays were designed as a set of probes (short nucleotide oligomers) ar-

rayed on a solid substrate. Transcript abundance is measured by fluorescence inten-

sity based on the hybridization of the transcript to the probes, as each transcript is

fluorescently labeled [32]. This process allows researchers to perform relative abun-

dance analyses that have driven the discovery of therapeutic targets [33], disease

characterization [34, 35] or the development of prognostic and diagnostic classifiers

[36, 37].

In contrast to microarrays, RNA-seq captures and quantifies the transcripts

present in an RNA extract and allows researchers to explore the whole transcrip-

tome rather than relying on a limited number of predefined probes. The generated

nucleotide sequences are aligned to a reference genome and converted into read

counts that can be used to model gene expression levels accurately. Just as microar-

rays, RNA-seq technology has been widely applied in disease research, improving

our knowledge [38] and enabling the identification of novel therapeutic targets [39]

and the prediction of patient responses to treatment [40].

1.4.2 Analysis strategies

Since different transcriptomic datasets have unique properties, the preprocessing

of their data involves distinct methods tailored to the research objective and the

technology used. Both technologies, microarray, and RNA-seq, will provide a matrix

with the quantification of gene expression after passing through quality control and

reads or probes annotation stages. This so-called counts matrix is the starting point

of transcriptomic analyses. Once the transcript counts are available, the biological

questions to be answered by the research will drive the analysis to be conducted.

Differential expression analysis is the quintessential analysis in transcriptomics.

Counts are normalized, modeled, and statistically analyzed to study differential gene

expression, resulting in pair-wise tests between the compared groups and the proba-

bility estimates for the computed differences. This approach has proven to be helpful

in a broad range of fields, including biomarker detection [41] and disease character-

ization [42].

6
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Another essential analysis in the transcriptomics toolset is survival analysis, in

which gene expression data is integrated with clinical information to identify poten-

tial prognostic and predictive biomarkers. Researchers can detect gene signatures

associated with longer or shorter survival times by analyzing gene expression pro-

files across patient groups with different survival outcomes [41]. This knowledge

can be used to develop new diagnostic assays, treatment strategies, and personal-

ized medicine approaches.

These methodologies provide researchers with lists of genes or transcripts of in-

terest, generally ranked according to statistical criteria. These lists can enrich their

value if combined with functional annotations from biological databases, such as

The Gene Ontology (GO), the Kyoto Encyclopedia of Genes and Genomes (KEGG),

or Reactome. Functional enrichment analysis is the method that uses statistical ap-

proaches to identify significantly enriched or depleted groups of genes associated

with different phenotypes in order better to understand the underlying biological

processes or signaling pathways.

1.4.3 Data repositories

Vast amounts of transcriptomics data are generated yearly, and sharing them with

the scientific community in an open, systematic and standardized way is crucial

for advancing research. By making data publicly available, researchers can build

upon previous work, identify patterns otherwise unnoticed, and accelerate discov-

ery. Transcriptomics data repositories play a pivotal role in facilitating this sharing,

adhering to quality control and data management standards, and ensuring the ap-

plication of the FAIR principles [43].

Gene Expression Omnibus (GEO) was developed by the National Center for

Biotechnology Information in 2002 [44]. Since then, it has been the leading public

repository of high-throughput gene expression data [45], allowing researchers to

access raw and processed data with experimental descriptions and sample metadata.

Tens of thousands of publications
1

have reused and reanalyzed data published in this

1
https://www.ncbi.nlm.nih.gov/geo/info/citations.html
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repository to advance science.

The European counterpart, developed in 2003 by the European Bioinformatics

Institute, is ArrayExpress [46]. This repository provides added value to researchers

as a team of data curators ensures the quality and reliability of all submitted data.

Furthermore, ArrayExpress acts as a mirror of a subset of curated GEO datasets,

improving data sharing and interoperability.

In cancer research, the data repository by excellence is Genomic Data Com-

mons (GDC), launched in 2016 by the National Cancer Institute. GDC integrates

and harmonizes genomic, transcriptomic, and clinical data from multiple research

projects, including The Cancer Genome Atlas (TCGA) [47]. This project started in

2006 as a collaboration between the National Cancer Institute and the National Hu-

man Genome Research Institute, collecting data from more than 126000 patients,

spanning 33 different types of cancer.

1.4.4 Meta-analysis

Systematic reviews and meta-analyses, when combined, provide a comprehensive

and reliable understanding of a specific research question. The first step of the pro-

cess is the systematic review, a method for comprehensively gathering and criti-

cally analyzing all relevant research on a specific topic. It is based on systematically

searching different databases and screening studies to critically assess their qual-

ity and methodology [48, 49]. These studies are screened and evaluated based on

predefined inclusion and exclusion criteria. Lastly, a meta-analysis summarizes and

analyzes the data retrieved from the selected studies. Meta-analysis is a statisti-

cal methodology that allows researchers to combine the results of multiple studies

addressing the same research question. The result is a more precise and reliable es-

timate of a given phenomenon than single studies [48]. Meta-analysis relies on the

quality of the underlying studies. Therefore, the systematic review paves the way by

comprehensively identifying and evaluating studies, while the meta-analysis quan-

titatively synthesizes their work.

As discussed in the previous section, several scientific organizations have cre-
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ated repositories to systematically store transcriptomic studies and make them avail-

able to the scientific community, constituting a relevant source of information for

transcriptomic research. Even though the cost of high-throughput technologies has

significantly decreased with time, this has been a restriction for generalizing its use.

Therefore, a considerable number of studies include an adjusted or reduced sample

size, which may limit their detection power. Meta-analysis represents a valuable

approach to fill this gap, integrating published data and significantly improving the

detection power in transcriptomics research.

Irene Pérez Díez 9
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2.1 Justification

Cancer remains one of the leading causes of mortality worldwide [2]. Further re-

search in this area is required, as the development of effective treatment benefits

from understanding underlying molecular mechanisms and identifying cancer vari-

ability between patients. The field of bioinformatics has made remarkable progress

in analyzing large-scale genomic data to characterize cancer subtypes and explore

potential biomarkers. Many datasets have been generated and, due to the increasing

application of FAIR principles to publication requirements [43], are made available

to other researchers online. However, despite these advancements, challenges still

need to be addressed, particularly in integrating and interpreting diverse datasets

from multiple sources.

The small sample size of most of the experiments and their confinement to a

specific scenario represent limiting factors in the evaluation of these transcriptomic

studies. By reanalyzing data from different sources, the experiments proposed in this

work can overcome sample size limitations, increase statistical power, and identify

biomarkers that may have been overlooked in individual studies. This approach not

only complements the findings of the original data contributors but also provides a

fresh perspective into methodologies for cancer subtyping and biomarker discovery.

Lung adenocarcinoma and pancreatic ductal adenocarcinoma were consensu-

ally chosen with our collaborators to illustrate the methodology’s broad applicabil-

ity. This decision was based on the clinical burden these diseases represent. Both

LUAD and PDAC are characterized by inter-patient heterogeneity, thus being rele-

vant to cancer subtyping strategies. Additionally, these two cancer types offer con-

trasting challenges: LUAD shows sex disparities in its incidence and survival rates,

while PDAC is characterized by a profoundly immunosuppressive microenviron-

ment. By applying the proposed approach in these distinct contexts, we wanted to

prove its versatility and robustness in deciphering intricate transcriptomic patterns

and yielding clinically relevant insights despite being based on already published

data.
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Overall, the proposed computational approach overcomes the challenges of in-

tegrating data from different sources by using meta-analysis techniques to integrate

datasets on a results level rather than on a raw data level. Moreover, this research

encourages to further extend the use of generated data. This utilization of pub-

lished datasets holds significant value, especially when considering the difficulties

associated with data collection and data scarcity in certain contexts. This approach

empowers scientists with technical expertise but limited data access to contribute

significantly to the field and expands research possibilities. Thus, this thesis offers

a framework to propel the in-depth understanding of cancer subtypes, even when

primary data collection may be challenging or limited.
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2.2 Objectives

The main objective was to develop and implement computational approaches to

characterize cancer subtypes.

The specific objectives were addressed in the specific scientific publications and

were:

• To assess the potential of combining published data to give researchers a

deeper understanding of cancer subtypes

• To characterize the transcriptomic functional differences in LUAD between

men and women

• To study the transcriptomic landscape of PDAC

• To identify PDAC subtypes and potential biomarkers based on patient survival

These objectives will contribute to advancing the understanding of cancer het-

erogeneity and the identification of potential personalized treatment strategies.

12
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3.1 Overview

Differences in epidemiological and clinical patterns of lung adenocarcinoma have

been described between male and female patients. Our research aimed to assess

the molecular mechanisms underlying those differences through functional profiling

and meta-analysis of lung adenocarcinoma expression datasets. In this chapter, we

display the research work we performed in this regard, culminating in a scientific

publication.

3.2 Reference and contribution of the candidate

Pérez-Díez, I.; Hidalgo, M.R.; Malmierca-Merlo, P.; Andreu, Z.; Romera-Giner, S.;

Farràs, R.; de la Iglesia-Vayá, M.; Provencio, M.; Romero, A.; García-García, F. Func-

tional Signatures in Non-Small-Cell Lung Cancer: A Systematic Review and Meta-

Analysis of Sex-Based Differences in Transcriptomic Studies. Cancers 2021, 13, 143.

DOI: 10.3390/cancers13010143. PMID: 33526761.

The candidate participated in study design, software development, formal anal-

ysis, investigation, data curation, data visualization and writing of the manuscript.

3.3 Functional Signatures in Non-Small-Cell Lung

Cancer: A Systematic Review and Meta-Analysis

of Sex-Based Differences in Transcriptomic Stud-

ies

3.3.1 Introduction

Lung cancer is the most frequently diagnosed cancer and the leading cause of cancer-

related death worldwide, representing 18.4% of all cancer deaths [19]. Exposure to

Irene Pérez Díez 13
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tobacco, domestic biomass fuels, asbestos, and radon represent the most relevant

lung cancer risk factors [19, 20]; however, as has become evident from studies of

other cancer types, sex-based differences (sexual dimorphisms) may also have sig-

nificant relevance in lung cancer [19, 50, 51]. Lung cancer exhibits sex-based dispari-

ties in clinical characteristics and outcomes, with better survival observed in women

[20, 25, 52]. While lung cancer incidence worldwide is higher in men, there exists an

increasing trend in women that cannot be solely explained by tobacco consumption

[19, 53]. Furthermore, studies have reported sex-dependent differences in estro-

gen receptors and their impact on lung cancer [54–56]; however, conflicting results

have attributed lung cancer susceptibility in women to genetic variants, hormonal

factors, molecular abnormalities, and oncogenic viruses [20, 26, 57, 58]. Adenocar-

cinoma represents the most frequent non-small cell lung cancer (NSCLC) subtype

in both sexes [59], with a higher predominance in women compared to men (41%

of cases in women versus 34% in men) [20, 25, 26]. Interestingly, Wheatley-Price et

al. demonstrated a more pronounced survival rate difference between male and fe-

male lung adenocarcinoma patients when compared to other tumor types [25]. The

molecular causes underlying such sex-biased patterns remain largely unknown, as

limited efforts have been made for lung adenocarcinoma, with few studies consider-

ing this differential perspective [60–63]. These limitations can be partially addressed

through meta-analysis, a robust methodology that combines information from re-

lated but independent studies to derive results with increased statistical power and

precision [64, 65]. As current treatment strategies do not cure most lung cancer

patients, and invasive diagnostic techniques (e.g., via biopsies and bronchoscopies)

often induce discomfort in patients, meta-analyses that improve our understanding

of sex-specific molecular mechanisms in lung adenocarcinoma may facilitate the

discovery of non-invasive prognostic and diagnostic biomarkers. We performed a

meta-analysis based on functional profiles of transcriptomic studies to explore the

molecular mechanisms underlying sex-based differences in early-stage lung adeno-

carcinoma. We carried out exhaustive review and selection steps to guarantee the

homogeneity of the selected studies and the subsequent comparison and integration

of the data in the meta-analysis with an appreciation of this strategy’s specific lim-

14
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itations. After the systematic review, we retrieved and analyzed nine studies from

GEO [44] and TCGA [47], and then combined the results in a random-effects meta-

analysis. This approach allowed the identification of functional alterations caused

by lung adenocarcinoma in both male and female patients, comparing tumor sam-

ples with adjacent non-tumor tissue. In this study, we identified immune responses,

purinergic signaling, and lipid metabolism as the main biological processes that dis-

play differences between male and female lung adenocarcinoma patients, with the

acute immune response increased in female patients. Overall, our findings provide

evidence that sex-based differences influence cancer biology and may impact re-

sponse to treatment. Furthermore, underlying sex-based differences may contribute

to the discovery of sex-specific prognostic and diagnostic biomarkers and the im-

provement of personalized therapies.

3.3.2 Results

We organized our findings into three sections: the first describes the studies evalu-

ated and selected in the systematic review; the second section reports on the results

of the bioinformatic analysis of each of these selected studies as follows: (i) ex-

ploratory analysis, (ii) differential expression, and (iii) functional characterization;

while the third section presents the results of the differential functional profiling by

sex.

3.3.2.1 Study Search and Selection

The systematic review identified 207 non-duplicated studies, of which 48.8% in-

cluded both male and female patients (Figure A.1). We applied inclusion and exclu-

sion criteria (see Figure 3.1) to select a set of homogeneous and comparable studies

to ensure the reliability of the subsequent analyses. To ensure study homogene-

ity (and in the hope of contributing to the early diagnosis of disease), we focused

on those studies of early-stage disease and selected nine transcriptomic studies for

further analysis (Table 3.1). The selected studies represented a population of 1366

early-stage samples (369 controls and 997 cases), of which 44% were from men, and
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16 Chapter 3. Identification of sex-based functional signatures in lung cancer

56% from women (Figure 3.2), with a median age of 65.54 years old. Table 3.1, Fig-

ure 3.2, and Table A.1 contain further information regarding the selected studies and

the clinicopathological characteristics of the study population.

Table 3.1 – Studies selected after the systematic review.

Study Platform Publication

GSE10072 Affymetrix Human Genome U133A Array [66]

GSE19188 Affymetrix Human Genome U133 Plus 2.0 Array [67]

GSE31210 Affymetrix Human Genome U133 Plus 2.0 Array [33, 68]

GSE32863 Illumina HumanWG-6 v3.0 Expression BeadChip [34]

GSE63459 Illumina HumanRef-8 v3.0 Expression BeadChip [36]

GSE75037 Illumina HumanWG-6 v3.0 Expression BeadChip [37]

GSE81089 Illumina HiSeq 2500 [69]

GSE87340 Illumina HiSeq 2000 [70]

TCGA Illumina HiSeq 2000 [47]

3.3.2.2 Individual Analysis

As the normalized data derives from different platforms, we performed exploratory

and processing steps for the data set to ensure the comparability and integration of

subsequent analyses. The exploratory analysis found a lack of abnormal behavior

except for three samples in the principal component analysis (PCA) and unsuper-

vised clustering; therefore, we excluded the GSM47570 and GSM47578 samples in

study GSE19188, and the GMS773784 sample in study GSE31210 from further analy-

sis. The differential expression results for each study demonstrated a large number

of differentially expressed genes when comparing female lung adenocarcinoma sam-

ples to female control samples and male adenocarcinoma samples to male control

samples (see Table A.2). However, the evaluation of sex-based differences in lung

adenocarcinoma patients provided a small number of significantly affected genes

(see Table A.3), with no intersecting genes. We performed an individual functional

enrichment analysis of GO terms and KEGG pathways to identify the possible im-

plications of these sex-specific differentially-expressed genes in pathways relevant

to lung adenocarcinoma. The identified pathways revealed a diversity of significant

results among datasets, which we have summarized in Table 3.2. When analyzing

intersections, UpSet plots (Figure 3.3, equivalent to a Venn diagram) illustrate the

16
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Figure 3.1 – Flow of information through the different phases of the systematic review, fol-

lowing PRISMA Statement guidelines [48].
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Figure 3.2 – Number of samples per study, divided by sex and experimental group (ADC:

lung adenocarcinoma samples).
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degree of intersection between studies, demonstrating that most significant results

are exclusive of each study. This data highlights the need for integrated strategies,

such as meta-analyses, to increase the statistical power of any findings.

Figure 3.3 – The intersection of significant functions between studies. UpSet plots for (a)

Gene Ontology (GO) biological process, (b) GO molecular functions, (c) GO cellular compo-

nents, and (d) Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. UpSet plots

detailing the number of common elements among GO terms in our functional enrichment

analysis. Horizontal bars indicate the number of significant elements in each study. The ver-

tical bars indicate the common elements in the sets, indicated with dots under each bar. The

single points represent the number of unique elements in each group.
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Table 3.2 – Summary of functional enrichment analysis results by GO functions (BP: Biological Process, MF: Molecular Functions, CC: Cellular Component),

and KEGG pathways. “Up” terms are overrepresented in female lung adenocarcinoma patients, while “Down” terms are overrepresented in male lung

adenocarcinoma patients.

Study Significant GO BP Significant GO MF Significant GO CC Significant KEGG

Up Down Total Up Down Total Up Down Total Up Down Total

GSE10072 26 153 179 29 8 37 16 40 56 1 5 6

GSE19188 7 12 19 0 3 3 11 20 31 1 4 5

GSE31210 21 2 23 0 0 0 4 0 4 8 2 10

GSE32863 428 51 479 28 5 33 40 41 81 27 6 33

GSE63459 0 26 26 0 3 3 8 27 35 1 4 5

GSE75037 245 35 280 14 4 18 14 21 35 22 5 27

GSE81089 2 1 3 7 1 8 7 4 11 1 1 2

GSE87340 178 62 240 3 0 3 48 13 61 26 1 27

TCGA 294 228 522 28 30 58 21 70 91 30 17 47

2
0
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3.3.2.3 Meta-analysis

We performed a functional meta-analysis for each of the 8672 GO functions and

KEGG pathways, including every term found in at least two studies. Results with

a false discovery rate (FDR) of < 0.05 included 106 GO biological processes (BP), 3

GO molecular functions (MF), and 20 KEGG pathways, which were associated with

21 wider functional groups. We rejected potential bias on the significant results

after the inspection of funnel plots; furthermore, sensitivity analyses failed to in-

dicate alterations in the results due to the inclusion of any study. The results for

the 129 significant GO terms and KEGG pathways are further detailed in Table A.4,

including FDR, the log odds ratio LOR, and its 95% confidence interval CI, and the

standard error SE of the LOR. In addition, Table A.5 details the number of functions

involved in each of the genes of this functional signature, and Figure A.2 displays

the prognostic description of this set of significant functions.

3.3.2.3.1 Upregulated Functions

We discovered that 43.88% of detected functions related to the immune response

(Table A.4 and Figure 3.4), which all displayed upregulation in female lung adeno-

carcinoma patients. This finding agrees with studies that report more robust innate

and adaptive immune responses in women who, for example, present with more

efficient antigen-presenting cells (APC) than males [71, 72]. The results provided

evidence for the positive regulation of an acute inflammatory response, with CD8+

alpha-beta T cell differentiation and activation, B cell proliferation and activation,

and an increase of interleukin (IL) biosynthesis, including IL-2, 6, 8, 10, and 17.

Several immune-related signaling pathways also displayed differences between fe-

male and male lung adenocarcinoma patients. We discovered the upregulation of

the MyD88-independent toll-like receptor signaling pathway, NIK/NF-kappa β sig-

naling pathway, FC-epsilon receptor signaling pathway, B-cell receptor signaling

pathway, Toll-like receptor signaling pathway, NOD-like receptor signaling path-

way, and RIG-I-like receptor signaling pathways in female lung adenocarcinoma

patients. Overall, these findings suggest the relevance of sex-based differences in
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Figure 3.4 – Summary dot plot of GO BP meta-analysis results. Only those significant terms

with a LOR over 0.4 are shown.

immune responses to lung cancer, which may represent a significant contributor to

the marked differences observed during disease progression in male and female pa-

tients. Furthermore, such findings may help to define novel therapeutic targets and

may have important implications for immunotherapy.

We also uncovered evident sex-based differences in cell metabolism. Studies

have shown the significant upregulation of lipid metabolism (ceramide and sph-

ingolipid biosynthetic processes) in females and the higher utilization of carbohy-

drates by males [73, 74]. Furthermore, lipid metabolism and signaling are widely ac-

cepted as major players in cancer biology [75]. “Metabolism- Nucleic acids metabolism

and signaling” was the second most abundant functional group upregulated in fe-

male lung adenocarcinoma patients, comprising 8.63% of the altered functions. These

GO terms and KEGG pathways are mainly related to purinergic signaling through

G protein-coupled receptors and cytidine metabolism. Other functional groups up-

regulated in female lung adenocarcinoma patients include cell migration and home-

ostasis. Overall, further explorations of sex differences in metabolic pathways may

provide new perspectives for treatment approaches with sex-specific effects.
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3.3.2.3.2 Downregulated Functions

It should be noted that 23.26% of the significant functions exhibited lower activity

in female compared to male lung adenocarcinoma patients. Downregulated func-

tional groups include those related to cell cycle progression, cell junctions, DNA

repair and telomere protection, mitochondrial processes, neural development, post-

translational changes, post-transcriptional changes, protein degradation, and tran-

scription regulation (Table A.4 and Figure 3.4). Taken together, the downregulated

pathways in female patients suggest the existence of lower levels of oxidative stress

compared to male patients [76], which may contribute to the existence of a less per-

missive tumorigenic environment.

3.3.2.4 Metafun-NSCLC Web Tool

The Metafun-NSCLC web tool (https://bioinfo.cipf .es/metafun-nsclc) contains in-

formation related to the nine studies and 1329 samples involved in this study. For

each study, this resource includes fold-changes of genes and LOR of functions and

pathways that users can explore to identify profiles of interest. We carried out a

total of 8672 meta-analyses. For each of the 129 significant functions and pathways,

Metafun-NSCLC depicts the global activation level for all studies and each study’s

specific contribution using statistical indicators (LOR, CI, and p-value) and graphical

representations by function as forest and funnel plots. This open resource hopes to

contribute to data sharing between researchers, the elaboration of innovative stud-

ies, and the discovery of new findings. Here, we also highlight the importance of

including/reporting sex-related data in the results of clinical studies given their gen-

eral importance in tumor risk, treatment response, and outcomes in lung adenocar-

cinoma and other cancers/disorders. The integration of sex-based differences in this

manner has the potential to significantly impact the cancer biology field.
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3.3.3 Discussion

Despite the profuse evidence for the influence of sex on rates and patterns of metas-

tasis, the expression of prognostic biomarkers, and therapeutic responses in several

cancer types [77, 78], sex-based differences have not been consistently considered

when studying cancer, designing therapies, or constructing clinical trials. Cases of

NSCLC, including adenocarcinoma, exhibit differences in incidence, prevalence, and

severity in female and male patients [19, 20, 25, 79]. Elucidating the molecular basis

for this sex-based differential impact will have clinical relevance, as this information

can guide/improve both diagnosis and treatment.

Biomedical research generally underrepresents female patients, with sex-based

differences rarely considered [80, 81]. Our systematic review of transcriptomic stud-

ies revealed that only 48.8% of lung adenocarcinoma-related datasets considered

both sexes, a figure similar (49%) to that reported by Woitowich et al. [81]. Sex-

based differences impact disease biomarkers, drug responses, and treatment [80],

and, therefore, sex must represent a critical component of experimental design.

Added to this problem, we faced a lack of standardization among studies and de-

tailed clinical information (i.e., mutations, smoking status, stages) when searching

for suitable datasets. The consideration of Findable, Accessible, Interoperable, and

Reusable FAIR data principles [43], a requisite for quality science, would ensure that

generated data can be of further use throughout the scientific community.

To the best of our knowledge, only four studies have attempted to address the

functional alterations caused by lung adenocarcinoma in both male and female pa-

tients—those by Shi et al. [62], which considered female patients, Araujo et al. [60],

Yuan et al. [61], and Li et al. [63]. Shi et al. [62] integrated samples from two datasets

for a differential expression analysis followed by a functional enrichment analysis,

whereas Araujo et al. [60] independently processed six datasets and jointly ana-

lyzed their results. Yuan et al. [61] compared male and female patients with various

cancer types (including lung adenocarcinoma) using the TCGA dataset, but did not

include control samples in the statistical comparison. Li et al. [63] evaluated the

differences in lung adenocarcinoma by focusing only on metabolic pathways. By

24



3.3. Functional Signatures in Non-Small-Cell Lung Cancer: A Systematic Review and

Meta-Analysis of Sex-Based Differences in Transcriptomic Studies 25

including both male and female patients and controls in our gene expression com-

parison, in contrast with the analysis performed by Shi et al. [62] and Yuan et al.

[61], we have effectively unveiled sex-based differences occurring in lung adeno-

carcinoma. Of note, 88% of the results reported by Yuan et al. [61] relate to the sex

chromosome, but not necessarily due to cancer. Shi et al. [62] described the conse-

quences of cancer development in female patients, but the authors failed to compare

said effects with male patients. Although Araujo et al. [60] do not describe the sta-

tistical comparisons performed (and do not perform a statistical integration such as

meta-analysis), the authors describe the results obtained for each dataset. Our study

addressed sex-based differences in male and female lung adenocarcinoma patients

through meta-analysis to address previous limitations and improve on those ap-

proaches employed by others. Despite certain supposed limitations to our approach

(the presence of studies with different sample sizes and types of platforms), meta-

analyses can integrate selected studies by eliminating inconsistency in individual

studies, thereby increasing the statistical power, and highlighting robust disease-

associated functions. We performed a meta-analysis using a random-effects model

on Gene Set Enrichment Analysis (GSEA) results independently obtained from each

study to evaluate the functions differentially altered between male and female lung

adenocarcinoma patients. To make results comparable and reduce biases in the type

of analysis used, we applied the same bioinformatics strategy from normalized ex-

pression matrices to GSEA results. This robust methodology integrates groups of

data and provides results with higher statistical power and precision [64, 65] and re-

veals findings that cannot be obtained through the intersection or addition of results

in individual studies. Nevertheless, we selected only samples from early-stage lung

adenocarcinoma patients to reduce variability and included smoking status in the

differential expression linear model. While the inclusion of the mutational status of

relevant genes to lung adenocarcinoma (e.g., EGFR) could have revealed important

insight, the lack of this information in the majority of the studies and the resultant

limited sample size hampered this aim. We would support the inclusion of this type

of data as a requirement for the publication of new data to repositories, such as the

GEO.
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The immune system plays a crucial role in the development of cancer [82], and

several studies have reported sex-based differences in immune responses (reviewed

by Klein and Flanagan [72]). Tumor cells evade the immune system using different

strategies, including the modulation of antigen-presentation and the suppression of

regulatory T cells. Therefore, sex differences in APCs and their downstream effec-

tor cells, among other components, may contribute to the sexual disparity observed

in various aspects of cancer development and may significantly impact antitumor

immunity and immunotherapy. Adult females generally present more robust innate

and adaptive immune responses than males, as evidenced by increased phagocytic

activity of neutrophils and macrophages, more efficient APCs, and differences in

lymphocyte subsets (B cells, CD4+T cells, CD8+T cells) and cytokine production.

Accordingly, our results demonstrate an enrichment of immune response-related

terms in female lung adenocarcinoma patients, which agrees with the findings of

Araujo et al. [60]. The analyzed functions suggest the positive regulation of CD8+

alpha-beta T cell activation and differentiation in female lung adenocarcinoma pa-

tients, which play an essential role in antitumor immunity [83, 84]. Furthermore, Ye

et al.[84] discovered a more abundant population of effector memory CD8+ T cells

in female lung adenocarcinoma patients, which agrees with our results. A previous

study described CD8+ lymphocyte levels as a prognostic biomarker in NSCLC [85],

and specifically in lung adenocarcinoma [86], with a correlation between higher lev-

els of CD8+ lymphocytes with higher survival rates and lower disease recurrence.

Elevated levels of active CD8+ T cells in female lung adenocarcinoma patients could

form part of the molecular mechanism underlying higher survival rates when com-

pared to male lung adenocarcinoma patients. Activation of the Notch signaling path-

way decreases CD8+ T lymphocyte activity in lung adenocarcinoma [87]; therefore,

the downregulation of the Notch signaling pathway discovered in female lung ade-

nocarcinoma patients could explain higher CD8+ T activity when compared to male

lung adenocarcinoma patients.

Concerning the immune response, we also detected differences that supported

the increased production of IL-2, which is known to stimulate T cell proliferation

and the production of effector T cells, thereby amplifying the lymphocytic response
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[88]. Higher levels of IL-2 could also relate to increased activity of CD8+ T cells in

female lung adenocarcinoma patients. Increased levels of IL-10 are also supported

in female lung adenocarcinoma patients and, although IL-10 has anti-inflammatory

and anti-immune activities [89, 90], studies have suggested a dual role in cancer. In

advanced lung adenocarcinoma, high expression of IL-10 receptor 1 correlates with

worse prognosis [90], while IL-10 expression by T-regulatory cells inhibits apoptosis

through Programmed death-ligand 1 inhibition [89]. Nevertheless, IL-10 correlates

with better prognosis when expressed by CD8+ T cells in early-stage NSCLC [91],

and it seems to activate the antitumor control of CD8+ T cells [92]. IL-2 and IL-10

could display increased activity in early-stage female patients, alongside a higher

population of active CD8+ T cells than males, conferring women a survival advan-

tage.

We also detected the positive regulation of IL-6 biosynthesis in female lung ade-

nocarcinoma patients, with increased IL-6 levels correlating with worse prognosis

in NSCLC patients in previous studies [93, 94]. Network analysis in non-smoking

female lung adenocarcinoma patients described IL-6 as one of the pathology’s cen-

tral nodes [62], and these findings agree with our results, which provide evidence

of the critical role of IL-6 in tumor progression in female lung adenocarcinoma pa-

tients. IL-8 and IL-17 exhibit increased production and biosynthesis in female lung

adenocarcinoma patients, with said interleukins known to influence tumor growth

and metastasis and correlate with worse prognosis [95–97].

Although altered immune responses can positively and negatively influence

tumor progression, our findings have detected GO terms that point to an elevated

acute immune response in female compared to male lung adenocarcinoma patients.

Of note, sex-based immunological differences in lung adenocarcinoma might have

an impact on immunotherapy response. Different studies have addressed the role

of sex in immunotherapy [50, 84, 98] and established improved survival for female

NSCLC patients. The discovered molecular pathways differentially activated be-

tween male and female lung adenocarcinoma patients may underlie phenotypic dif-

ferences regarding immunotherapy response. Sex-based differences in metabolism

occur under physiological conditions and in the presence of cancer. Here, we de-
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tected an upregulation of purinergic signaling and nucleic acid metabolism in fe-

male lung adenocarcinoma patients, a finding not described in previous lung cancer

studies. An NSCLC-based study described an antitumor effect of the P2X4 recep-

tor [99], which also exhibits sexual dimorphism in murine brain microglia [100].

Other P2 and A2 receptors play a role in NSCLC [99], but evidence of sex-based

differences in receptor expression in human NSCLC patients has yet to be reported.

Purinergic signaling and the role of purinergic receptors may also have relevance

to innate and adaptive responses in different inflammatory and neurodegenerative

diseases and several cancer types, including pancreatic ductal carcinoma, hepato-

cellular, hepatobiliary carcinoma cells, and breast cancer [101–105]. Of note, studies

have linked the upregulation of purinergic signaling with poor prognosis in pan-

creatic ductal adenocarcinoma [104]. We also discovered significant differences in

lipid metabolism, with the positive regulation of ceramide and sphingolipid biosyn-

thetic processes upregulated in female lung adenocarcinoma patients. The presence

of lipids can promote tumorigenesis, while higher adipose tissue levels are associ-

ated with poorer outcomes in several cancers [75]. Thus, exploring the differential

roles of purinergic signaling and lipid metabolism between male and female lung

adenocarcinoma patients may represent an interesting proposition to improve sex-

specific risk-stratification of patients, prevention, diagnosis, and treatment. DNA

damage and repair-related genes also presented sex-based differences in lung ade-

nocarcinoma patients. In general, males present with a higher level of DNA damage,

and females present with a lower DNA repair capacity [106], and, in agreement, we

detected DNA repair and telomere protection as a downregulated functional group

in female lung adenocarcinoma patients (with both mechanisms involved in tumor

growth prevention [107]). Furthermore, we discovered the upregulation of DNA

repair and an increase of DNA unwinding in male lung adenocarcinoma patients.

DNA unwinding has emerged as a new target in cancer therapy with a primary fo-

cus on helicase inhibitors [108]. Besides, regarding DNA repair, the evaluation of

poly (ADP-ribose) polymerase inhibitors in NSCLC cell lines has suggested potential

therapeutic activity [109, 110], and there may be value in exploring both treatment

approaches in NSCLC patients, especially male patients. With these results in mind,
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we propose future studies focused on DNA repair and lipid/purinergic metabolism in

female lung adenocarcinoma patients and the immune response in male lung adeno-

carcinoma patients in the hope of developing enhanced therapeutic strategies. Our

study has characterized functional differences between the sexes in lung adenocar-

cinoma, shedding light on the functional basis behind this pathology in male and

female patients. While our meta-analysis confirmed the conclusions of other stud-

ies, we also report previously undescribed alterations in biological processes that

may broaden this field of study. Further knowledge regarding how those factors re-

lated to the functional mechanisms, described above, differentially impact male and

female lung adenocarcinoma patients, and may improve our understanding of the

disease and improve treatment and diagnosis through biomarker identification.

3.3.4 Materials and methods

Bioinformatics and statistical analysis employed R software v.3.5.3 [111]. Table A.6

details R packages and versions.

3.3.4.1 Study Search and Selection

Publicly available datasets were collected from GEO [44], ArrayExpress [112], and

TCGA [47]. A systematic search of studies published in the period 2004–2018 was

conducted in 2019 following the preferred reporting items for systematic reviews

and meta-analyses (PRISMA) guidelines [48]. Two researchers involved in the study

carried out the literature search, and the consistency of the review and selection

procedures used was evaluated and confirmed. Several keywords were employed in

the search, including lung adenocarcinoma, non-small-cell lung carcinoma, Homo

sapiens, and excluding cell lines. Eleven variables were considered for each study,

including the clinical characteristics of the patients (e.g., sex and smoking habit)

and experimental design (e.g., sample size and sample extraction source). The final

inclusion criteria were:

• Sex, disease stage, and smoking habit variables registered;
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• RNA extracted directly from human lung biopsies;

• Both normal and lung adenocarcinoma samples available;

• Patients who had not undergone treatment before biopsy;

• Sample size of > 3 for case and control groups in both sexes.

Finally, normalized gene expression data of six array NSCLC datasets (GSE10072,

GSE19188, GSE31210, GSE32863, GSE63459, and GSE75037) and counts matrix of

three RNA-seq NSCLC datasets (GSE81089, GSE87340, and TCGA-LUAD) were re-

trieved.

3.3.4.2 Individual Transcriptomics Analysis

Individual transcriptomics analysis consisted of three steps: pre-processing, differ-

ential expression analysis, and functional enrichment analysis Figure 3.5.

Data pre-processing included the standardization of the nomenclature of the

clinical variables included in each study, normalization of RNA-seq counts matrix,

and exploratory analysis. RNA-seq counts were pre-processed with the edgeR [113]

R package using the trimmed mean of m-values (TMM) method [114]. We assessed

the normalization methods performed by the original authors for each dataset, and

log2 transformed the matrices when necessary. Annotation from probe set to Entrez

identifiers from the National Center for Biotechnology Information [115] database

and gene symbol was carried out with the biomaRt [116] R package. When deal-

ing with duplicated probe-to-Entrez mappings, the median of their expression val-

ues was calculated. The exploratory analysis included unsupervised clustering and

PCA to detect patterns of expression between samples and genes and the presence

of batch effects in each study Figure 3.5. Differential expression analyses were per-

formed using the limma [117] R package. To detect differentially expressed genes in

male and female lung adenocarcinoma patients, the following contrast was applied:

(ADC.W − Control.W )− (ADC.M − Control.M)

where ADC.W, Control.W, ADC.M and Control.M correspond to lung adenocar-

cinoma affected women, control women, lung adenocarcinoma affected men, and
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Figure 3.5 – Workflow and analysis design. (a) Summary of the analysis design followed

in this work, (b) PCA plot and hierarchical clustering analysis as an example of exploratory

analyses (to explore possible batch effects and to assure expected data behavior) performed

at the pre-processing stage to assess for the integrity of the data, (c) example of UpSet plot as

an intersection analysis for functional enrichment analysis results, and (d) examples of forest

and funnel plots to assess meta-analysis results.
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control men, respectively. Paired samples design was implemented, and tobacco

consumption was included as a batch effect on the limma linear model to reduce its

impact on data. p-values were calculated and corrected for FDR [118]. This compari-

son allows the detection of genes and functions altered by the disease and that have

higher or lower activity in women when compared to men. Significant functions

and genes were considered when FDR < 0.05. Functional enrichment analyses were

performed using the GSEA implemented in the mdgsa [119] R package. p-values

were, again, corrected for FDR. For functional annotation, two functional databases

were used: the KEGG Pathway database [120] and GO [121]. GO terms were ana-

lyzed and propagated independently for each GO ontology: BPs, MFs, and cellular

components (CC). Those annotations excessively specific or generic were filtered

out, keeping functions with blocks of annotations between 10 and 500. Intersec-

tions within groups were analyzed with UpSet plots [122] Figure 3.5.

3.3.4.3 Functional Meta-Analysis

Functional GSEA results were integrated into a functional meta-analysis [123] im-

plemented with mdgsa and metafor [124] R packages. Meta-analysis was applied

under the DerSimonian and Laird random-effects model [125], taking into account

individual study heterogeneity. This model considers the variability of individual

studies by increasing the weights of studies with less variability when computing

meta-analysis results. Thus, the most robust functions between studies are high-

lighted. A total of 6467 GO BP terms, 785 GO MF terms, 1207 GO CC terms, and 213

KEGG pathways were evaluated. p-values, FDR corrected p-values, LOR, and 95%

CIs of the LOR were calculated for each evaluated function. Functions and path-

ways with FDR < 0.05 were considered significant, and both funnel and forest plots

were computed for each Figure 3.5. These representations were checked to assess

for possible biased results, where LOR represents the effect size of a function, and

the SE of the LOR serves as a study precision measure [126]. Sensitivity analysis

(leave-one-out cross-validation [124]) was conducted for each significant function

to verify possible alterations in the results due to the inclusion of any study.
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3.3.4.4 Metafun-NSCLC Web Tool

All data and results generated in the different steps of the meta-analysis are available

in the Metafun-NSCLC web tool (https://bioinfo.cipf .es/metafun-nsclc), which is

freely accessible to any user and allows the confirmation of the results described in

this manuscript and the exploration of other results of interest. The front-end was

developed using the Angular Framework. All graphics used in this web resource

have been implemented with Plot.ly except for the exploratory analysis cluster plot,

which was generated with ggplot2 [127]. This easy-to-use resource is divided into

five sections: (1) Summary of analysis results in each phase. Then, for each of the

studies, the detailed results of the (2) exploratory analysis, (3) differential expression,

and (4) functional profiling. The user can interact with the web tool through graphics

and tables and search for specific information for a gene or function. Finally, Section

(5) provides several indicators for the significant functions identified in the meta-

analysis that inform whether they are more active in men or women.

3.3.5 Conclusions

Sex-based molecular differences may influence the incidence and outcome of lung

adenocarcinoma and, therefore, may have important clinical implications. We iden-

tified immune responses, purinergic signaling, and lipid-related processes as the

main biological processes altered between male and female lung adenocarcinoma

patients by a meta-analysis of transcriptomic datasets. Said processes exhibit in-

creased activity in female lung adenocarcinoma patients, whereas other processes

(such as DNA repair) are more active in male lung adenocarcinoma. Although fur-

ther studies are required to verify and fully explore these findings, our results pro-

vide new clues to understand the molecular mechanisms of sex-based differences in

lung adenocarcinoma patients and new perspectives regarding the identification of

biomarkers and therapeutic targets.
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4.1 Overview

In this chapter, we explore the transcriptomic landscape of Pancreatic Ductal Adeno-

carcinoma and analyze whether genes from the most significantly altered pathways

are related to patient survival. This combines two traditional approaches to can-

cer subtyping: gene expression profiling and clinical behavior. We propose gene

signatures that can subtype “hot” and “cold” immune tumors, to help drive patient

treatment based on how the tumor is expected to respond to immunotherapy.

4.2 Reference and contribution of the candidate

Pérez-Díez, I.; Andreu, Z.; Hidalgo, M.R.; Perpiñá-Clérigues, C.; Fantín, L.; Fernandez-

Serra, A.; de la Iglesia-Vaya, M.; Lopez-Guerrero, J.A.; García-García, F. A Com-

prehensive Transcriptional Signature in Pancreatic Ductal Adenocarcinoma Reveals

New Insights into the Immune and Desmoplastic Microenvironments. Cancers 2023,

15, 2887. DOI: 10.3390/cancers15112887. PMID: 37296850.

The candidate participated in data curation, formal analysis, investigation, method-

ology, software development, validation, visualization and writing of the manuscript.

4.3 A Comprehensive Transcriptional Signature in

Pancreatic Ductal Adenocarcinoma Reveals New

Insights into the Immune and Desmoplastic Mi-

croenvironments

4.3.1 Introduction

Pancreatic ductal adenocarcinoma (PDAC) is the most common type of pancreatic

cancer, representing over 80% of all diagnosed pancreatic neoplasms. This highly
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lethal cancer has a poor prognosis, with a median survival rate of fewer than six

months, although its five-year survival rate increased to 12% in recent years [2].

While it is currently the third leading cause of cancer-related deaths worldwide

[2], the yearly increase in its incidence may make PDAC the second leading cause

of cancer-related deaths by 2030 [2]. The absence of reliable biomarkers for ef-

fective screening and early diagnosis at the pre-symptomatic stages when treat-

ments function most effectively represents a primary reason why most PDAC cases

remain incurable. Currently, most patients present locally advanced (30–35%) or

metastatic (50–55%) PDAC at diagnosis [128]. In advanced-stage PDAC patients,

curative surgery remains impossible, and systemic therapeutic options (including

immunotherapy) remain limited and ineffective [129]. Among the solid tumors,

PDAC represents an immunologically “cold” tumor characterized by sparse T cell

infiltration [30, 130]; in contrast, immunologically “hot” tumors (such as melanoma)

suffer from a high neoantigen load and immune cell infiltration [131]. PDAC tu-

mors possess distinctive features such as an extracellular matrix (ECM) composition

and a fibrotic stroma, which make it highly desmoplastic and significantly influ-

ence immune responses [132]. PDAC cells strongly interact with the surrounding

microenvironment, which includes components such as immune cells, cytokines,

metabolites, fibroblasts, and hyaluronan. These interactions create a highly fibrotic

and active organized stroma (desmoplastic stroma) and an immunosuppressive en-

vironment that makes PDAC invasive and highly resistant to immunotherapy [29,

30]; therefore, the characterization of the stroma and tumor immune microenvi-

ronment in PDAC patients represents a critical step in developing more effective

therapeutic strategies. In the last few years, several investigations have focused on

studying gene expression in PDAC to better understand the molecular composition

of this devastating cancer and identify different molecular subtypes of pancreatic

cancer that improve the stratification of patients for clinical strategies [133, 134].

Bailey and colleagues defined four molecular subtypes of pancreatic cancer: squa-

mous, pancreatic progenitor, immunogenic and aberrantly differentiated endocrine

exocrine (ADEX) [134], while Moffitt’s group identified two stromal subtypes that

were defined as “normal” and “activated” [133]. Nevertheless, in clinical practice, it is
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difficult to perform this broad molecular test on each patient. Therefore, and despite

these new insights in pancreatic cancer, the diagnostic and prognostic outcomes of

PDAC patients are extremely poor compared to those of other types of cancers. Ad-

ditionally, new studies need to be conducted to understand the extreme complexity

of PDAC and find simpler genetic signatures that can be incorporated into clinical

practice and improve the clinical setting for PDAC patients and families. We aimed

to understand the stroma and tumor immune microenvironments of PDAC patients

by retrieving and analyzing transcriptomic data from 21 different studies (represent-

ing a population of 922 samples; 320 controls and 602 cases) from the Gene Expres-

sion Omnibus GEO and ArrayExpress data repositories. Through meta-analysis, we

identified a series of gene signatures with survival prognostic value that may play

a significant role in therapeutic decision making for PDAC patients, including five

genes not previously related to PDAC survival. We also provide a friendly user web

tool with detailed and interactive visualization of our comprehensive meta-analysis

results.

4.3.2 Materials and Methods

For all bioinformatics and statistical analyses, we employed R software v.4.1.3 [111]

(Table A.7 details the R packages and versions).

4.3.2.1 Study Search and Selection

Publicly available datasets were collected from GEO [44] and ArrayExpress databases

[112]. Data available in the Cancer Genome Atlas (TCGA) [47] were excluded from

the original search with the purpose of using this dataset as an external cohort for

survival analysis. Following the Preferred Reporting Items for Systematic Reviews

and Meta-Analyses (PRISMA) guidelines [48], a systematic search of published stud-

ies was conducted in 2021 (period: 2002–2021). Three researchers in the study con-

ducted the literature search, and the consistency of the review and selection pro-

cedures used was evaluated and confirmed. A broad search was performed using

the MeSH (Medical Subject Headings) thesaurus keyword “pancreatic cancer”, after
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which stringent filters were applied. The final inclusion criteria were:

• Normal and PDAC samples available.

• RNA extracted directly from human pancreas biopsies.

• Patients had not undergone treatment before biopsy.

• Sample size > 4 for PDAC and control groups.

Finally, normalized gene expression from twenty-seven microarray studies (GSE86436,

GSE71989, GSE62452, GSE62165, GSE60979, GSE56560, GSE55643, GSE46234, GSE43795,

GSE43288, GSE41368, GSE32676, GSE28735, GSE27890, GSE22780, GSE19650, GSE18670,

GSE16515, GSE15471, GSE1542, GSE11838, GSE102238, GSE101448, E-MTAB-3365,

E-MTAB-1791, E-MEXP-950, and E-EMBL-6) and the count matrices of two RNA-seq

(GSE119794 and GSE136569) datasets were retrieved for further analysis.

4.3.2.2 Study Search and Selection

Datasets were individually analyzed in two steps: preprocessing and differential

expression analysis.

The nomenclature of clinical variables included in each study was standard-

ized for data preprocessing, and then, exploratory analysis was performed. Prior

to exploratory analysis, RNA-seq raw count matrices were normalized using the

trimmed mean of m values from the edgeR package [113, 114]. The normaliza-

tion method performed by the original authors for each microarray dataset was as-

sessed, and the matrices were log2 transformed when necessary. Exploratory analy-

sis included expression boxplots, unsupervised clustering, and principal component

analysis (PCA) to detect patterns of expression between samples and genes and the

presence of batch effects in each study. Differential gene expression analyses were

performed in R using limma [117], and a paired sample design was implemented

in those datasets where applicable. Differentially expressed genes were identified

using p values with Benjamini-Hochberg correction [118] for a false discovery rate

(FDR) at a significance level of 0.05.
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4.3.2.3 Gene Expression Meta-Analysis

Gene expression analysis results were integrated into a meta-analysis using the Der-

Simonian & Laird random effects model [125], considering individual study hetero-

geneity. This model considers the variability in individual studies by increasing the

weights of studies with less variability when meta-analysis results are computed. A

total of 24,365 genes were evaluated. p values, FDR-corrected p values, the binary

logarithm of Fold Change (log2FC), and 95% confidence intervals of log2FC were cal-

culated for each evaluated gene, and both funnel and forest plots were computed for

each gene. These representations were assessed for possible biased results, where

log2FC represents the effect size of a function, and the standard error of the log2FC

serves as a study precision measure [126]. Genes were considered significant when

FDR < 0.05, absolute log2FC > 0.6, and were measured in at least eleven studies.

Sensitivity analysis (leave-one-out cross-validation [124]) was conducted for each

significant gene to verify alterations in the results, owing to the inclusion of any

study.

Statistically significant results from the gene expression meta-analysis were

functionally enriched by over-representation analysis (ORA) using clusterProfiler

[135, 136] and ReactomePA [137]. Gene Ontology terms [121, 138] and Reactome

pathway [139] enrichments were performed following this approach. Only those

functions and pathways with more than ten differentially expressed genes found in

the gene set were considered. Functional enrichment was explored and visualized

with the rrvgo package [140].

4.3.2.4 Web tool

To make the data and results of our research widely accessible, a web tool was de-

veloped using the shiny package in R. The tool was developed in a user-friendly

manner, allowing users to navigate and interact with the data. Users can then se-

lect different variables and parameters to visualize the data in numerous ways. The

tool also includes interactive plots and tables to display the analysis results. The

web tool is hosted on a secure server and is regularly maintained to ensure stability
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and performance. The source code for the tool is also publicly available and can be

accessed through our GitHub repository: https://github.com/ipediez/ShinyReport

(accessed on 1 May 2023).

4.3.2.5 Survival Analysis

RNA-seq expression data and metadata from patients in the Pancreatic adenocarci-

noma TCGA cohort were downloaded from cBioPortal [141]. Z-score of RNA-seq

expression were used for survival analysis. For each analyzed gene, samples were

divided into two groups based on their expression levels. Samples with expression

Z-score below the lower quartile were classified as having low levels of expression,

whereas samples exceeding the upper quartile were classified as having high levels

of expression. Forty-five samples with high levels of expression and forty-five sam-

ples with low levels of expression were included for survival analysis. Gene-wise

Kaplan–Meier survival analysis compared the low-level and high-level expression

groups. This method estimates the probability of survival over time based on the

expression levels of the gene of interest. The log-rank test was used to compare the

survival curves between distinct groups of samples. For risk-score-based survival,

genes were tagged as highly expressed for a given sample when the expression lev-

els were above the upper quartile. Then, samples were clustered into “high-risk”

and “low-risk” groups based on the number of highly expressed genes. The cutoff

was set as the median of the highly expressed genes in each sample. Furthermore,

a proportional hazard model using Cox regression was implemented to study the

impact of clinicopathological variables on survival and evaluate the contribution of

the risk score in a multivariate model.

4.3.3 Results

We performed a systematic review and differential gene expression analysis of PDAC

transcriptomic studies from GEO [44] and ArrayExpress [112] databases to explore

the stroma and immune environments in PDAC patients. We then integrated the

results of each differential gene expression analysis into a meta-analysis. The bio-
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Figure 4.1 – Workflow and analysis design. Relevant studies from GEO and ArrayExpress

databases were retrieved, and data exploration and preprocessing were then performed. After

differential gene expression analysis, the results from different studies were integrated into a

gene meta-analysis. Functional profiling methodologies were applied to explore the biological

implications of the results.

logical context of the meta-analysis results was explored via functional enrichment

using an ORA of GO terms and pathways (Figure 4.1). Finally, we conducted survival

analysis to explore the impact of specific candidate genes on patients’ outcomes.

4.3.3.1 Systematic Review

The systematic review identified 143 non-duplicated studies. Then, we excluded

studies with samples from patients under cancer treatment and studies where the

sample size was less than four in the PDAC or the control group, resulting in a sub-

set of twenty-nine studies (Figure 4.2). We discarded eight studies after exploratory

analysis, giving a final set of twenty-one homogeneous and comparable studies for

further analysis. The selected studies included 922 samples (320 controls and 602

cases). Although most studies did not include relevant sample metadata, we assessed

the clinical characteristics when they were available. Table A.8 and Table A.9 contain

further information regarding the selected studies and clinicopathologic character-

istics of the study population.
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Figure 4.2 – Flow of information through the distinct phases of the systematic review, fol-

lowing PRISMA Statement guideline.
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Figure 4.3 – Volcano plot summarizing the gene expression meta-analysis. Significantly over-

expressed genes are shown in red, and significantly under-expressed genes are shown in blue

(FDR < 0.05; absolute log2FC > 0.6). Genes that do not show significant differential expression

are represented in black. Only genes found in at least eleven studies are shown.

4.3.3.2 Integration of Differential Expression Profiles

Exploratory analysis found abnormal normalization or a lack of annotation in eight

studies, which we excluded from further analysis (listed in Table A.9). Then, we

performed the independent differential gene expression analysis of each study and

meta-analysis for 24,365 genes evaluated in the different datasets, including every

gene found in at least two studies. We considered results with an FDR < 0.05, an

absolute log2FC > 0.6, and those evaluated in at least eleven studies to be signifi-

cant; overall, 1153 genes met these criteria (Figure 4.3; further details are given in

Table A.10).

We noted the presence of genes encoding ECM components (e.g., collagens, fi-

bronectin, laminin, and stratifin), proteoglycans (e.g., versican), cell adhesion molecules,

integrins, matrix metallopeptidases, and additional peptidases and enzymes that im-

pact mechano-contractility, epithelial tension, and the stiffness of the tumor stroma,

which can promote tumor progression and resistance to therapy (Figure 4.4). ?? dis-

plays the twenty genes with the highest and lowest log2FC values from the meta-

analysis; these genes mainly play roles in ECM remodeling, desmoplasia, metabolism,
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Figure 4.4 – Overview of PDAC microenvironment. Meta-analysis results indicated an over-

expression of several ECM components, e.g., stratifin, fibronectin 1, different laminin subtypes

(gamma2 and beta3), collagens, and proteoglycans that characterize the dense and desmo-

plastic stroma of PDAC tumors. Additionally, the results highlight the presence of immune

components such as IFN27, which contribute to an increase in the number of M2 macrophages

and a decrease in the number of CD8+ T cells. Therefore, the desmoplastic stroma and the im-

mune system favor immune tolerance and poor prognosis in PDAC. The red upward-pointing

arrows denote genes exhibiting significant overexpression in the conducted meta-analysis.

IFN27: interferon alpha inducible protein; MMP1: matrix metallopeptidase 1; NK cells: natu-

ral killer cells; T cells: T effector lymphocytes; Tregs: T regulatory lymphocytes T.

and the immune system. Table A.10 reports a complete list of significantly affected

genes.

We performed ORA using GO biological process terms to identify the possi-

ble implications of 1153 significantly differentially expressed genes in the PDAC

samples. We considered only those biological processes with at least ten associ-

ated genes and an adjusted p value under 0.05. We found 546 over-represented

biological processes among the over-expressed genes and 40 biological processes

over-represented among the under-expressed genes (Table A.11). ORA revealed the

enrichment of terms related to the tumor microenvironment (Figure 4.5), with GO

terms related to the immune system, cell adhesion, and ECM remodeling/degradation.

Of note, additional over-represented functions were related to metastasis (vascu-

larization, cell migration, collagen, mesenchymal transition, cell proliferation, and

peptidyl modifications) [132, 142].
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Table 4.1 – Top twenty genes up-regulated in PDAC patients

Gene

Symbol

Gene

Name
Expression Level Function

CEACAM6 CEA cell adhesion molecule 6 UP ECM remodeling

SLC6A14 Solute carrier family 6 member 14 UP ECM remodeling

S100P S100 calcium-binding protein P UP ECM remodeling

CTSE Cathepsin E UP ECM remodeling

SULF1 Sulfatase 1 UP ECM remodeling

POSTN Periostin UP ECM remodeling

GJB2 Gap junction protein beta 2 UP ECM remodeling

GPRC5A
G protein-coupled receptor class C

group 5 member A
UP ECM remodeling

SFN Stratifin UP ECM remodeling

FN1 Fibronectin 1 UP ECM remodeling

LAMC2 Laminin subunit gamma 2 UP ECM remodeling

CEACAM5 CEA cell adhesion molecule 5 UP ECM remodeling

MMP1 Matrix metallopeptidase 1 UP ECM remodeling

COL11A1 Collagen type XI alpha 1 chain UP ECM remodeling

TSPAN1 Tetraspanin 1 UP ECM remodeling

IFI27 Interferon alpha inducible Protein 27 UP Immune System

CST1 Cystatin SN UP

Epithelial

-mesenchymal

transition

LAMB3 Laminin subunit beta 3 UP ECM remodeling

COL10A1 Collagen type X alpha 1 chain UP ECM remodeling

VCAN Versican UP ECM remodeling
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Table 4.2 – Top twenty genes down-regulated in PDAC patients

Gene

Symbol

Gene

Name
Expression Level Function

CTRB2 Chymotrypsinogen B2 DOWN ECM remodeling

PLA2G1B Phospholipase A2 group IB DOWN Metabolism

CTRC Chymotrypsin C DOWN ECM remodeling

GNMT Glycine N-methyltransferase DOWN Metabolism

AQP8 Aquaporin 8 DOWN H2O2 transport

SYCN Syncolin DOWN Exocytosis

CPA2 Carboxypeptidase A2 DOWN Metabolism

CELA2A Chymotrypsin-like elastase 2A DOWN ECM remodeling

GP2 Glycoprotein 2 DOWN Metabolism

KLK1 Kallikrein 1 DOWN Serine protease

ALB Albumin DOWN Oncotic pressure

CTRB1 Chymotrypsinogen B1 DOWN ECM remodeling

ERP27 Endoplasmic reticulum protein 27 DOWN
Lipid and protein

synthesis

TMED6 Transmembrane p24 trafficking protein 6 DOWN Insulin secretion

PNLIPRP1 Pancreatic lipase-related protein 1 DOWN Metabolism

CUZD1 CUB and zona pellucida like domain 1 DOWN
ECM remodeling and

Immune System

CELA2B Chymotrypsin-like elastase 2B DOWN ECM remodeling

PNLIPRP2 Pancreatic lipase-related protein 2 DOWN Metabolism

CTRL Chymotrypsin-like DOWN ECM remodeling

SERPINI2 Serpin family I member 2 DOWN Protease inhibitor
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Figure 4.5 – Scatter plot of ORA results. The scatterplot reports the GO biological process

representative terms after redundancy reduction in a two-dimensional space derived from

the semantic similarities between GO terms. The dot size represents the number of biological

processes related to a GO term. The parent terms of the main clusters are labeled.

4.3.3.3 Interactive Tool for Results Visualization

The web tool contains comprehensive information regarding the data and results of

the meta-analysis of gene expression. The application includes tables and plots for

the differential expression results of twenty-one datasets included in the study and

meta-analysis results. Statistical indicators, such as the log odds ratio, confidence

intervals, and adjusted p values, are provided to estimate each study’s global expres-

sion and specific contribution. The web tool is available online: https://bioinfo.cipf

.es/MetaPDAC/ (accessed on 1 January 2023).
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4.3.3.4 Immune System: A Functional Overview in PDAC

To focus our analysis on the tumor immune microenvironment, we extracted a con-

sensus list of genes related to the immune system and inflammation from NCBI and

GO databases (mainly framed in the categories of HLA, interleukin, CI, interferon,

chemokine, and S100 genes, Table A.12). Considering an FDR threshold of 0.05 and

an absolute fold change greater than 0.6, we discovered the significant differential

expression of 322 immune genes in our meta-analysis results. To explore the func-

tional involvement of these results, we performed ORA on this group of genes using

GO biological process terms and Reactome pathways. We considered significant

functional terms with at least ten associated genes and an adjusted p value < 0.05.

We discovered the over-representation of thirty-three GO terms and twenty-seven

pathways among the over-expressed immune-related genes and none when under-

expressed genes were analyzed. The enriched terms suggest the increased activity

of neutrophil-related immune response, the negative regulation of cell killing, inter-

feron signaling, and an antigen presentation via major histocompatibility complex

II.

4.3.3.5 Immune and Stromal Survival Signatures Impact PDAC Prognosis

We explored the 322 differentially expressed immune-related genes and identified a

set of 70 genes of particular interest in our experimental research (Table 4.3). We

performed survival analysis using the pancreatic adenocarcinoma TCGA cohort for

each of these genes and found statistically significant differences in twenty-eight

genes (IFI27, IL1R2, IL1RN, IL1RAP, IL18, IL22RA1, HCP5, SLFN13, CD58, CD109,

IFI44L, IFI16, IFITM1, IFIT1, IFIT3, IRF9, IFIT2, IFI35, CXCL10, CXCL5, CXCL9,

S100P, S100A6, S100A2, S100A16, S100A11, S100A14, and S100A10), which shared a

pattern: a higher expression in patients associated with a lower rate of survival. As

far as we are aware, this is the first time that HCP5, SLFN13, IRF9, IFIT2, and IFI35

have been related to prognosis value in PDAC patients (Figure A.3).

We analyzed genes that displayed statistical significance as a “signature”, divid-

ing the samples into high-risk and low-risk groups based on the number of highly

48



4.3. A Comprehensive Transcriptional Signature in Pancreatic Ductal Adenocarcinoma

Reveals New Insights into the Immune and Desmoplastic Microenvironments 49

Table 4.3 – Subset of immune-related genes. Genes in bold possess statistically significant

differences according to survival analysis.

Functional Group Genes

HLA

HLA-F, HLA-DRB5, HLA-B, HLA-A, HCP5, HLA-DRA,

HLA-DPA1, HLA-DQB1, HLA-DQA1, HLA-DMB,

HLA-DRB1, HLA-G, HLA-DPB1, SLFN12, SLFN13,

SLFN11

Interleukin
IL1R2, IL1RN, IL1RAP, IL7R, IL2RG, IRAK3, IL18, LIF,

IL22RA1

CD
CD58, CD109, CD52, CD53, CD74, CD14, CCDC80,

CCDC141, CCDC69, DCDC2, PDCD4

Interferon
IFI27, IFI44L, IFI6, STING1, IFI16, IFITM1, ISG20, IFIT1,

IFIT3, IFITM2, IRF9, IFIT2, IFNGR2, IFITM3, IFI35

Chemokine
CCL20, CCL18, CXCL10, CXCL5, CXCL8, CXCR4, CKLF,

CXCL9, CXCL3, CXCL14, CXCL12

S100
S100P, S100A6, S100A2, S100A16, S100A11, S100A4,

S100A14, S100A10

expressed genes (above the upper quartile). We set the median (six highly expressed

genes) as the cutoff value to divide the samples into groups. Interestingly, patients

in the high-risk group possessed shorter survival times than those in the low-risk

group did (p value < 0.0001, Figure 4.6A). Furthermore, we studied the effect of this

signature in a multivariate Cox model including age, alcoholic history, the pres-

ence of chronic pancreatitis, diabetes diagnostic, tumor grade, and the American

Joint Committee on Cancer classification of a metastatic tumor and a residual tu-

mor as covariates. The proposed signature was the only variable with p value <

0.05 and showed a hazard ratio of 2.36 (Supplementary Figure S4). We then ana-

lyzed the co-occurrence of highly expressed genes in the samples, finding two main

co-occurrence groups that related to high-risk patients: i) the interferon gene fam-

ily (IFN genes) and ii) the S100 and IL genes (S100A14, S100A16, S100A6, S100A11,

IL1R2, IL1RN, and S100P) (Figure 4.6B).

To explore how a desmoplastic environment can affect patients’ survival, we

employed an homologous approach using genes related to ECM remodeling (Ta-

ble 4.1 and Table 4.2). We discovered eleven genes whose survival analysis showed

statistically significant differences (CEACAM5, CEACAM6, FN1, GJB2, GPRC5A,

LAMB3, LAMC2, SFN, SLC6A14, TSPAN1, and VCAN). Again, we divided the sam-

Irene Pérez Díez 49



50

Chapter 4. Identification of transcriptional signatures to stratify pancreatic ductal

adenocarcinoma patients

Figure 4.6 – A twenty-eight gene signature clustered patients into high-risk or low-risk

groups based on the number of highly expressed signature genes in their transcriptomic pro-

file. Patients with at least six highly expressed genes were classified as having a high risk,

whereas those with five or fewer were classified as having a low risk. (A) Kaplan–Meier

curve. Patients from the high-risk group (red) had shorter survival times than patients from

the low-risk group did (blue). Below, the number of still alive patients and percentage in each

group at 0, 25, 50, 75, and 100 months, and the censored events. (B) Heatmap demonstrating

the patterns of high expression between genes and samples. Gene expression was coded as 1

for a sample above the upper quartile.

ples into high-risk and low-risk groups using the median of the number of highly

expressed genes as the cutoff value (median = 3). Patients with high levels of ex-

pression in three or more genes from the signature presented lower survival times

than those with fewer highly expressed genes did (p value = 0.00012, Figure 4.7A).

Of note, we distinguished a cluster of co-occurrence of patients with high levels of

GJB2, FN1, and VCAN at the same time (Figure 4.7B).

Finally, we performed comparative analysis between the immune and stromal

survival signatures identified in our work and other signatures generated in previous

works for patient stratification [133, 134]. These results provided insight into the

level of intersection between this group of signatures (Table A.13).

4.3.4 Discussion

Using comprehensive meta-analysis, we explored the immune environment and

desmoplastic stroma of PDAC tumors to contribute to a deeper understanding of tu-

morigenesis and the design of effective therapeutic strategies, such as immunother-
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Figure 4.7 – Survival analysis of ECM remodeling genes. An eleven-gene signature clustered

patients into high-risk or low-risk groups based on the number of highly expressed signature

genes in their transcriptomic profile. Patients with at least three highly expressed genes were

classified as having a high risk, whereas those with five or fewer were classified as having a

low risk. (A) Kaplan–Meier curve. Patients from the high-risk group (red) had shorter survival

times than patients from the low-risk group did (blue). Below, the number of still alive patients

and percentage in each group at 0, 25, 50, 75, and 100 months, and the censored events. (B)

Heatmap demonstrating the patterns of high expression between genes and samples. Gene

expression was coded as 1 for a sample above the upper quartile.

apies. ECM components from the desmoplastic stroma tightly interact with the im-

mune environment and contribute to immune evasion by modulating immune cell

infiltration, thus influencing cell proliferation, tumor progression, and overall sur-

vival [143, 144]. The meta-analysis and ORA results characterized differences in

the gene-expression landscape of PDAC tumors and identified more than 1000 dys-

regulated genes, most of them with immune system- and desmoplasia-related roles.

We discovered thirty-nine genes (twenty-eight immune-related genes and eleven

stroma-related genes) that impact PDAC patients’ survival. Among the top forty

dysregulated genes (??), we observed the upregulation of collagens (COL11A1 and

COL10A1), which influence immune infiltration and chemoresistance and confer a

poor prognosis [145–147]. PDAC patients also presented with upregulated periostin

expression, which has been linked to a shorter overall survival [148], and cystatin

SN, which contributes to pancreatic cancer cell proliferation and may represent a

potential biomarker for the early detection of pancreatic cancer [149]. Stratifin and

matrix metallopeptidase 1 also appeared to be upregulated in PDAC patients; strat-

ifin stimulates matrix metallopeptidase 1 expression in fibroblasts, contributing to
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remodel ECM [150]. The increased expression of fibronectin in the PDAC stroma

has also been reported. The observed upregulation of cathepsin E and sulfatase 1

expression in the PDAC microenvironment might also benefit the development of

therapeutic strategies with polymer drug conjugates since they may contribute to

drug release [mohamed_cysteine_2006 , 151, 153].

The analysis of the top forty dysregulated genes also provided evidence for the

downregulation of genes coding for proteolytic enzymes released by the pancreas

(e.g., chymotrypsin, chymotrypsinogen, lipases, and phospholipases). Pancreatic

cancer cells express around 20% of chymotrypsin C normal cells expression, with

this enzyme participating in cancer cell apoptosis and migration [154]. A recent re-

port suggested that a combination of trypsinogen and chymotrypsinogen displayed

an anti-tumorigenic potential [155].

Focusing on the immune environment, PDAC tumors develop a wide range of

mechanisms to evade the immune system (e.g., a low level of expression of HLA anti-

gens, immunosuppressive signals that inhibit natural killer and T cell functions, and

the presence of immunosuppressive cells). This creates an immunotolerant environ-

ment in which the immune system of PDAC patients does not robustly recognize and

target cancer cells [156]. We explored the expression of seventy genes of particular

interest, including those from the HLA, interleukin, CI, interferon, chemokine, and

S100 categories. The survival analysis of these genes in the pancreatic adenocarci-

noma TCGA cohort identified a twenty-eight immune-related gene signature with a

prognostic value that was used to cluster PDAC patients into high-risk and low-risk

groups.

The proposed signature possessed significance in univariate and multivariate

Cox models with clinicopathological variables, significantly adding statistical power

to the survival analysis. This signature could aid in the stratification of patients

(Figure 4.8) who could benefit from immunotherapeutic strategies, given that it

could contribute to distinguishing “cold” PDAC tumors (characterized by the low

presence of T cells (CD8+) and natural killer cells, high presence of immunosup-

pressive cell populations, and poor prognoses and responses to immunotherapy)

from “hot tumors” (with an opposite profile) [147, 157]. We uncovered two high
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Figure 4.8 – Patient stratification based on PDAC molecular features. Meta-analysis from

transcriptomic studies allows a better understanding of the PDAC environment. In this study,

the found gene signatures might contribute to the stratification of PDAC patients. In a first

step, the immune or the stroma gene signatures can divide patients into high- and low-risk

populations. After, with a focus on the immune signature co-occurrence, patients could be

divided into those with more S100/IL genes and those with more IFN expressed genes. The

knowledge about these molecular features of PDAC tumors may guide the design of more

effective therapeutic strategies.

gene-expression co-occurrence patterns, one composed of IFN genes and the other

of S100/IL genes. The IFN signaling pathways participate in PDAC development,

while the over-expression of S100 genes blocks the infiltration and cytotoxic activ-

ity of CD8+ T cells, and the low level of expression of IL1RN and IL1R2 has been

associated with increase survival in PDAC patients [158–160].

To the best of our knowledge, this is the first report of data suggesting a link be-

tween the HCP5, SLFN13, IRF9, IFIT2, and IFI35 immune genes and PDAC prognosis,

presenting the discriminatory power of clustering PDAC patients. The remaining

genes of the immune gene signature have been individually associated with PDAC or

other cancers, with data suggesting that their overexpression could impact patients’

diagnosis, prognosis, and response to treatment [161–166]; however, we report that

a joint gene expression signature of these genes impacts PDAC patients’ survival.

Focusing on the PDAC stroma, the altered genes include several types of col-

lagens, fibronectins, and proteolytic enzymes, such as metalloproteases and pepti-
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dases (?? and Table A.10), which significantly contribute to ECM composition and

stromal remodeling and support desmoplasia and immunosuppression [167]. The

survival analysis of significantly dysregulated stromal gene expression from the

meta-analysis of the pancreatic adenocarcinoma TCGA cohort revealed a gene sig-

nature with prognostic capacity that clustered PDAC patients into high-risk and

low-risk groups. We observed a co-occurrence pattern in high-risk patients, indi-

cating a subgroup of PDAC patients with a high level of expression of GJB2, FN1,

and VCAN genes. These results indicate stromal heterogeneity in PDAC [168] and

the need to characterize it to stratify patients (Figure 4.8).

With respect to other dysregulated genes, the upregulation of CEACAM5 and

CEACAM6 represents an early event in pancreatic carcinogenesis, with these genes

being candidates for immunotherapies [169–171]. Furthermore, laminins LAMBC2

and LAMB3 support cancer progression and resistance to gemcitabine—one of the

main chemotherapeutics used in PDAC patients [172, 173]. In general, the asso-

ciation of the stroma signature with a poor prognosis is consistent with the one

described in previous studies for each gene: CEACAM5 [174], CEACAM6 [175] ,

FN1 [176], GJB2 [177], GPRC5A [178], LAMB3 [179, 180], LAMC2 [179, 180], SFN

[181], SLC6A14 [182], TSPAN1 [183], and VCAN [176].

With respect to other similar approaches, we are aware of two additional stud-

ies in which expression datasets were integrated to explore the nature of the PDAC

in depth: one by Gooneskere and colleagues, who integrated six PDAC and three

other pancreatic carcinomas datasets [184], and one by Irigoyen and colleagues, who

integrated two peripheral blood datasets [185]. Both approaches integrate different

datasets at the gene level to increase the number of samples and perform unique dif-

ferential gene expression analysis. In contrast, our approach analyzed each dataset

independently, and then integrated the results, evaluating their robustness. From

the experimental design point of view, both studies differ greatly from ours, since

Grooneskere et al.’s [184] one is not specifically focused on PDAC , and Irigoyen et

al.’s [185] one does not analyze pancreatic tissue. From a methodological point of

view, our study contributes to a more profound and robust analysis of the PDAC

expression landscape by integrating data after differential gene expression analysis
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had been performed, thus avoiding the necessity to control heterogeneity among

studies and retaining the full potential of biological differences.

Other molecular studies based on whole transcriptome and genomic analyses of

pancreatic tumors have found specific gene signatures that identify different molec-

ular subtypes [133, 134]. However, the aim of this study was not to identify molec-

ular subtypes, such as in the cited works. The immune signature or the stromal sig-

nature presented in this work establishes patient survival groups (high-risk group

and low-risk group), which could help practitioners to decide if the patient could

benefit from immunotherapy, for example, or not. Intersection analysis indicated

that there is hardly any overlap between the gene signatures found in our study and

the signatures described by Bailey et al. [134] or Moffitt et al. [133] (as shown in the

supplemental analysis (Table A.13). Therefore, the proposed gene signatures show

subtype-independent survival value and display a reasonable number of genes for

them to be translated to clinics. Nevertheless, more and deeper studies are needed

for this purpose. Additionally, the works by Moffitt et al. [133] and Bailey et al.

[134] are enormously rich and provide comprehensive molecular stratification to

facilitate personalized treatment and the identification of therapeutic targets. Un-

fortunately, extensive molecular analyzes are difficult to translate to clinical practice

for individual patients.

A potential limitation of our study has been the relative heterogeneity among

the sample sizes and sequencing platforms used. The meta-analysis methodology,

which integrates data groups and provides results with higher statistical power and

precision [64, 65], addresses this issue by independently comparing each study and

combining the results. A lack of clinical and/or molecular information in most stud-

ies, such as survival time, stage condition, or molecular pattern, represents an ad-

ditional limitation. We employed TCGA data for survival analysis, but additional

analyses should integrate other covariates of interest in the study.

Finally, we provided an interactive web tool that allows users to explore our

results, facilitating the accessibility, transparency, and reusability of our research.

Overall, the web tool provides a detailed and interactive visualization of the meta-

analysis results, allowing users to further explore and understand the gene expres-
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sion patterns identified in the studies. Other functionalities include the capability to

customize and filter the data to further investigate specific aspects of the analysis in

more detail. In this manner, we aim to align our research with the FAIR principles to

share our data in a way that can be of further use to the scientific community who

studies this aggressive and lethal tumor.

4.3.5 Conclusions

Therapeutic strategies to overcome the immune microenvironment and the desmo-

plastic stroma barriers remain limited and generally unsuccessful. This study per-

forms a comprehensive transcriptional meta-analysis of the molecular PDAC en-

vironment. The results highlight the relevance of the interaction between the im-

mune system and stroma, revealing an impact on patients’ survival. The identified

gene signatures provide new insights into the potential therapeutic targets for this

deadly disease that can help to stratify its heterogeneity. Future studies are needed

to explore the benefits of targeting the immune and stromal microenvironments as

a treatment strategy for PDAC.
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Cancer is a leading cause of premature death worldwide [186] and, according to

the World Health Organization, is expected to be the cause of more than 15 million

deaths per year by 2040 [187]. One of the most challenging aspects of cancer is its

heterogeneity, as each type of cancer has its genetic profile. As a result, treatments

are not effective for all types of cancer [188]. In addition, there is a broad biological

diversity in patients that makes the development of the disease and its possible treat-

ment differ between individuals. Thus, for example, inherited mutations can cause

greater susceptibility to one type of cancer than another, or differences in the im-

mune system, especially between men and women, can influence the effectiveness

of treatment [10]. This diversity of cancer subtypes and variability among patients

are some of the reasons why cancer treatment is not always successful. Personalized

medicine approaches and tailored treatment can maximize effectiveness and reduce

adverse patient effects. This scenario is where cancer subtyping enters the equation,

offering researchers the knowledge of different molecular landscapes of the disease

and physicians the ability to predict a patient’s prognosis and response to treatment

more accurately.

Initially, we researched lung adenocarcinoma, a type of cancer in which epi-

demiological differences between men and women have been described [20, 25, 52].

We proved that the main affected functional domains were the immune system,

purinergic signaling, and lipid metabolism. We then explored the molecular mecha-

nisms underlying these differences. Interestingly, our results pointed to an elevated

acute immune response in female LUAD patients, aligning with previous studies on

female LUAD patients [84] or LUAD/NSCLC patients [85, 86, 91]. The discovered

molecular pathways differentially activated between males and females could un-

derlie the phenotypic differences regarding immunotherapy response observed in

the literature [50, 84, 98, 189].

Furthermore, we showed that sex can be a crucial variable when studying and

treating LUAD, as it could be the case for other cancer types. The omission of sex

consideration is a recurring deficiency in research design and reporting, with medi-

cal research centered historically on male physiology [80, 81]. Although there is ev-

idence about the sex differences in disease prevalence, manifestation, and response
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to treatment, sex-based biology and medicine are still viewed as a specialized area

of interest rather than a central consideration in medical research. This outdated

paradigm must change to reflect the growing body of scientific evidence and en-

sure that sex is appropriately incorporated into all aspects of medical research, from

study design to data analysis and interpretation. Otherwise, we could be drawing

the wrong conclusions from studies. Analyzing individuals of one sex may make

results not extrapolate to the other, and mixing them without analyzing possible dif-

ferences may mask relevant disease and treatment effects. Thus, the omission of sex

as a relevant variable could prevent us from finding better treatments and could lead

to poor medical decisions for half our population. Only by taking sex into account

as a fundamental biological variable can we reach the potential for more effective

and personalized treatments that truly address the unique needs of patients of both

sexes.

Following our LUAD research, we delved into the transcriptomic landscape of

pancreatic ductal adenocarcinoma. In this analysis, we aimed to understand the

intricate relationship between the significantly altered genes and pathways and pa-

tient survival. Our findings revealed a substantial association between the altered

genes and functions with the immune system and the extracellular matrix. Addi-

tionally, we formulated two distinct gene signatures, which were subsequently val-

idated using an external cohort, allowing us to establish a clear link between these

signatures and patient outcomes.

The meta-analysis strategy has allowed us to describe the transcriptomic sce-

nario of PDAC in-depth, confirming previous discoveries and providing new insight

not described before. By integrating individual studies, this approach allowed us to

report two new gene signatures impacting patient survival. By describing these gene

signatures, we have also reported a link between the HCP5, SLFN13, IRF9, IFIT2, and

IFI35 immune genes and PDAC prognosis for the first time. Previous studies have

associated the remaining genes shaping these prognostic signatures with poor prog-

nosis [174–183], suggesting their overexpression could impact a patient’s diagnosis,

prognosis, and treatment response. Our research is the first to combine them in a

joint gene expression signature impacting PDAC patients’ survival. These findings
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could be used to stratify patients, distinguishing between “hot” or “cold” tumors,

and drive therapeutic decisions, as patient response to immunotherapy may be re-

markably different for a patient depending on this.

Our research shows that the immune system and its interplay with the tumor

microenvironment are essential in tumor progression and treatment response in the

two cases studied. The status of the tumor ("hot" or "cold") leads to different can-

cer progression and prognosis [147, 157], and generalizing one of these statuses to

all patients is not only inefficient but counterproductive. These differences can be

related to clinical variables, as for LUAD. Sex as a variable is a driving force of im-

mune response differences between LUAD patients, and this knowledge could be

used to drive therapeutic decisions. In other cases, the differences are independent

of known clinical variables, as we showed for PDAC. Individual PDAC patients show

variability in how their tumor behaves and interacts with the immune system, lead-

ing to different survival times and potentially influencing tolerance or resistance to

immunotherapy. Further studies could assess if the proposed gene signatures are

related to immunotherapy response.

5.1 Strengths

This thesis’s major strength relies on using integration strategies of transcriptomic

profiles based on a meta-analysis, which allow the generation of new and relevant

biological knowledge in the described types of cancer. The applied methodology

provides greater robustness and statistical power compared to individual study anal-

yses. Meta-analysis studies a larger sample size, leading to more precise and reliable

effect size estimates, detecting even small but real effects that the noise of individ-

ual studies might mask. Furthermore, while individual studies are susceptible to

biases, meta-analysis can lessen the impact of these biases and explore and quantify

the variability in effect sizes across studies. Meta-analysis finds a consensus pat-

tern, allowing for more precise and objective conclusions than individual studies.

Lastly, the work presented here has been extensively evaluated by experts in the

field through the publication process, demonstrating the validity and significance of
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the research.

5.2 Limitations

There are some limitations in the work presented in this thesis. First, most stud-

ies lack clinical and molecular information, such as survival time, stage condition,

molecular pattern, or sex. Moreover, the systematic review performed for LUAD

studies revealed that less than 50% of the datasets considered this variable in their

study design. This lack of information represents a limitation, as variables poten-

tially impacting the results cannot be considered. We also faced a lack of standard-

ization among clinical information and gene annotation between studies. Some in-

formation is lost when transforming data from one codification to another, as gene

annotation conversion is not always one-to-one. Lastly, a potential limitation of our

studies has been the quality of the individual studies. Although the meta-analysis

approach addresses the heterogeneity among sample sizes and sequencing platforms

used by the individual analyses, its results are only as good as the quality of the stud-

ies it includes. We attempted to address this issue by applying quality control filters

during the study selection phase of our work. Even though all the studies evaluated

had been published through a peer review process, some were discarded after an

exploratory analysis due to questionable data quality.

5.3 Future perspectives

Based on our findings, collaborators from the Instituto Valenciano de Oncologia will

perform experimental validation to confirm the described PDAC gene signatures

and their impact on treatment response. Once confirmed, this strategy could be

applied to different cancer types of interest to draft further personalized medicine

approaches.
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1. Published data can be effectively reused to develop scientific knowledge fur-

ther and deepen the understanding of cancer subtypes. This highlights the

importance of collaboration and data sharing in the scientific community.

2. Meta-analysis is the proper statistical methodology for this aim, as it is robust

and improves the statistical power, masking possible deficiencies from some of

the published data. Meta-analysis can be effectively used to leverage published

data and push a step forward cancer research

3. Lung adenocarcinoma patients show sex-based transcriptomic functional dif-

ferences. This suggests the importance of considering sex as a relevant bio-

logical factor in lung cancer research and treatment, which could lead to more

personalized and effective therapies.

4. The molecular mechanisms underlying lung adenocarcinoma sex-based tran-

scriptomic differences are particularly related to the immune system, puriner-

gic signaling, and lipid metabolism. This insight opens new avenues for biomarker

research and therapies specifically targeting these biological pathways.

5. The pancreatic ductal adenocarcinoma transcriptomic landscape is strongly

linked to extracellular matrix components and the immune system. This as-

sociation suggests an immunosuppressive environment and a desmoplastic

stroma, which could influence treatment response and disease progression.

6. Based on the pancreatic ductal adenocarcinoma transcriptomic landscape, we

identified twenty-eight immune genes and eleven extracellular matrix-related

genes that impacted patient survival. These genes could be used to stratify

patients and drive medical practice.
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Appendix: Additional Figures and Tables

Note Tables too big to be rendered in this document are available at Zenodo
1
.

1
https://zenodo.org/doi/10.5281/zenodo.11032404

https://zenodo.org/doi/10.5281/zenodo.11032404


Figure A.1 – Information regarding sex distribution among reviewed studies.
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(a) Overall survival sex differences between low and high expression groups, in genes related to “negative

regulation of leukocyte degranulation (GO:0043301)”.

(b) Overall survival sex differences between low and high expression groups, in genes related to “inositol

trisphosphate metabolic process (GO:0032957)”.

(c) Overall survival sex differences between low and high expression groups, in genes related to “negative

regulation of chromatin silencing (GO:0031936)”.
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(d) Overall survival sex differences between low and high expression groups, in genes related to “inner

ear auditory receptor cell differentiation (GO:0000491)”.

(e) Overall survival sex differences between low and high expression groups, in genes related to “positive

regulation of leukocyte adhesion to vascular endothelial cells (GO:1904996)”.

Figure A.2 – Prognostic effect of transcriptional pathways. Overall survival differences be-

tween low and high expression groups, in men (left) and women (right). Low and high groups

include under or overexpressed genes respectively, related to each pathway. TCGA and GEO

datasets containing expression levels and survival information were used from Kaplan-Meier

Plotter web tool.
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Figure A.3 – A five gene (HCP5, SLFN13, IRF9, IFIT2, and IFI35) signature clustered patients

into high-risk or low-risk groups based on the number of highly expressed signature genes in

their transcriptomic profile. Patients with at least two highly expressed genes were classified

as having a high risk, whereas those with five or fewer were classified as having a low risk.

(A) Kaplan–Meier curve. Patients from the high-risk group (red) had shorter survival times

than patients from the low-risk group did (blue). Below, the number of still alive patients

and percentage in each group at 0, 25, 50, 75, and 100 months, and the censored events. (B)

Heatmap demonstrating the patterns of high expression between genes and samples. Gene

expression was coded as 1 for a sample above the upper quartile.
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Figure A.4 – Hazard Ratio of variables of interest included in COX model. The proposed

signature was the only variable with p value < 0.05.
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Table A.1 – Distribution of the clinicopathological characteristics of each study population. Tumor stage percentages were computed over the total number

of adenocarcinoma samples.

Study Samples
Age

(median + SD)
Sex (%) Smoking Status (%) Histology (%) Stage (%) * Mutations and Fusions (%)

GSE10072 80 60 ± 6.68
Men

Women

59 (73.75%)

21 (26.25%)

Non-smoker

Smoker

19 (23.75%)

61 (76.25%)

Adenocarcinoma

Control

43 (53.75%)

37 (46.25%)

IA

IB

IIA

IIB

5 (1.63%)

17 (39.53%)

3 (6.98%)

18 (41.86%)

Not reported

GSE19188 84 65.07 ± 10.39
Men

Women

62 (73.81%)

22 (26.19%)

Non-smoker

Smoker

50 (49.52%)

34 (40.47%)

Adenocarcinoma

Control

32 (38.10%)

52 (61.90%)

IA

IB

IIB

10 (31.25%)

15 (46.88%)

7 (21.97%)

Not reported

GSE31210 246 61 ± 8.08
Men

Women

116 (47.15%)

130 (52.85%)

Non-smoker

Smoker

123 (50%)

123 (50%)

Adenocarcinoma

Control

226 (91.87%)

20 (8.13%)

IA

IB

IIA

114 (50.44%)

54 (23.89%)

58 (25.67%)

ALK

EGFR

KRAS

Wild-type

11 (4.87%)

127 (56.19%)

20 (8.85%)

68 (30.09%)

GSE32863 90 72 ± 9.33
Men

Women

20 (22.22%)

70 (77.78%)

Non-smoker

Smoker

47 (52.22%)

43 (47.78%)

Adenocarcinoma

Control

45 (50%)

45 (50 %)

IA

IB

IIA

IIB

16 (35.56%)

18 (40.00%)

9 (20.00%)

2 (4.44%)

EGFR

KRAS

LKB1

KRAS+LKB1

Wild-type

12 (26.67%)

15 (33.33%)

4 (8.89%)

2 (4.44%)

12 (26.67%)

GSE63459 63 64 ± 11.37
Men

Women

29 (46.03%)

34 (53.97%)

Non-smoker

Smoker

8 (12.70%)

55 (87.30%)

Adenocarcinoma

Control

32 (50.79%)

31 (49.21%)
I 32 (100%)

KRAS

KRAS + tp53

tp53

Unknown

Wild-type

1 (3.13%)

2 (6.25%)

10 (31.25%)

5 (15.63%)

14 (43.75%)

GSE75037 154 70 ± 9.73
Men

Women

46 (29.87%)

108 (70.13%)

Non-smoker

Smoker

55 (35.71%)

99 (64.29%)

Adenocarcinoma

Control

71 (46.11%)

83 (53.89%)

IA

IB

IIA

IIB

25 (35.21%)

26 (36.62%)

3 (4.23%)

17 (23.94%)

EGFR

KRAS

LKB1

KRAS+LKB1

Wild-type

16 (22.54%)

25 (35.21%)

6 (8.45%)

5 (7.04%)

19 (26.76%)

GSE81089 100 67.5 ± 7.37
Men

Women

39 (39%)

61 (61%)

Non-smoker

Smoker

8 (8%)

92 (92%)

Adenocarcinoma

Control

81 (81%)

19 (19T)

IA

IB

IIA

IIB

45 (53.32%)

18 (22.2%)

8 (9.88%)

11 (13.58%)

Not reported

GSE87340 54 67 ± 12.44
Men

Women

8 (14.81%)

46 (85.19%)

Non-smoker

Smoker

54 (100%)

0 (0%)

Adenocarcinoma

Control

27 (50%)

27 (50%)

IA

IB

10 (37.04%)

17 (62.96%)
Not reported

TCGA 458 65.79 ± 9.93
Men

Women

209 (45.63%)

249 (54.37%)

Non-smoker

Smoker

132 (28.82%)

326 (71.18%)

Adenocarcinoma

Control

415 (90.61%)

43 (9.39%)

I

IA

IB

II

IIA

5 (1.20%)

136 (32.77%)

151 (36.39%)

1 (0.024%)

50 (12.05%)

Not reported
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Table A.2 – Summary of differential expression analysis results in individual studies. Two

exploratory differential expression analyses were performed (ADC Women - Control Women,

ADC.W -Control.W; ADC Men - Control Men, ADC.M - Control.M), together with the con-

trast of interest: (ADC.W - Control.W) - (ADC.M - Control.M). When performing the contrast

of interest, “Up” terms are overrepresented in female lung adenocarcinoma patients, while

“Down” terms are overrepresented in male lung adenocarcinoma patients.

Study
(ADC.W - ControlW) -

(ADC.M - ControlM)
ADC.W - Control.W ADC.M - Control-M

GSE10072
Up 0 1199 3182

Down 0 1296 2688

GSE19188
Up 0 2348 5828

Down 0 2111 3830

GSE31210
Up 0 3310 3560

Down 0 2370 2543

GSE32863
Up 6 5243 2458

Down 1 4507 2172

GSE63459
Up 0 2409 1561

Down 0 2064 1611

GSE75037
Up 1 5779 4115

Down 1 5117 3680

GSE81089
Up 3 2654 3564

Down 0 3383 4262

GSE87340
Up 1 4887 1875

Down 3 4958 1841

TCGA
Up 1 5861 5397

Down 0 5569 5269
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Table A.3 – Genes differentially expressed between male and female lung adenocarcinoma

patients.

ENTREZ ID Gene Name Up / Down logFC adj.pval Study

9086
Eukaryotic translation initiation

factor 1A Y-linked
Up

0.606

1.514

0.014

7.38 · 10−7
GSE32863

GSE75037

146330
F-box and leucine rich repeat

protein 16
Down

1.247

2.157

0.028

0.003

GSE32863

GSE75037

3394 interferon regulatory factor 8 Up 1.177 0.028 GSE32863

80301
pleckstrin homology domain

containing O2
Up 0.986 0.028 GSE32863

3689 integrin subunit beta 2 Up 1.393 0.043 GSE32863

11309
solute carrier organic anion

transporter family member 2B1
Up 1.123 0.049 GSE32863

83706 fermitin family member 3 Up 0.866 0.049 GSE32863

252948
testis-specific transcript,

Y-linked 16
Up

1.655

2.983

1.98 · 10−7

3.3 · 10−14
GSE81089

TCGA

107987337 ZFY antisense RNA 1 Up 1.609 0.001 GSE81089

6736 sex determining region Y Up 1.519 0.007 GSE81089

694 BTG anti-proliferation factor 1 Up 0.859 0.007 GSE87340

64582 G protein-coupled receptor 135 Down 2.213 0.007 GSE87340

22979 EFR3 homolog B Down 1.799 0.03 GSE87340

54753 zinc finger protein 853 Down 1.581 0.04 GSE87340

Table A.4 – All significant GO terms and KEGG pathways in the functional meta-analysis.

Available online at Zenodo .

Table A.5 – Genes annotated to significant GO terms and KEGG pathways in functional

meta-analysis. Available online at Zenodo.
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Table A.6 – Software and versions used in Pérez-Díez et al. [42]

Software / R package Version

R 3.5.3

AnnotationDbi 1.44.0

Biobase 2.42.0

biomaRt 2.38.0

edgeR 3.24.3

GEOQuery 2.50.5

ggdendro 0.1-20

ggpubr 0.2

hgu133plus2.db 3.2.3

illuminaHumanv3.db 1.26.0

KEGG.db 3.2.3

limma 3.38.3

mdgsa 1.14.0

metafor 2.1-0

methods 3.5.3

org.Hs.eg.db 3.7.0

reshape 0.8.8

stats 3.5.3

SummarizedExperiment 1.12.0

TCGAbiolinks 2.10.5

tidyverse 1.2.1

UpSetR 1.3.3

utils 3.5.3
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Table A.7 – Software version used in Pérez-Díez et al. [41]

Software / R package Version

R 4.1.3

rrvgo 1.4.4

tidyverse 1.3.1

edgeR 3.34.1

ArrayExpress 1.52.0

affy 1.70.0

GEOquery 2.60.0

ggplot2 3.3.6

limma 3.48.3

org.Hs.eg.db 3.13.0

metafor 3.4.0

reshape 0.8.9

ggpubr 0.4.0

biomaRt 2.48.3

clusterProfiler 4.0.5

topGO 2.44

AnnotationDbi 1.54.1

rbioapi 0.7.6

GO.db 3.13.0

ReactomePA 1.36.0

survival 3.4.0

survminer 0.4.9

cBioPortalData 2.14.10

Table A.8 – PDAC dataset inclusion. List of datasets included in the study, alongside its

expression profiling technology, number of samples, and inclusion/exclusion flag. Available

online at Zenodo .

Table A.9 – PDAC datasets clinical characteristics. Summary table of clinicopathologic vari-

ables for all the included studies. Individual sub-tables, including all the clinicopathologic

variables available for each study. Available online at Zenodo.

Table A.10 – Gene meta-analysis results. Summary statistics, name, symbol and ENSEMBL

ID of genes with FDR adjusted p-value < 0.05. Available online at Zenodo.

Table A.11 – ORA Results. Summary statistics, name, and GO ID. Available online at Zenodo.

Table A.12 – NCBI and GO Immune system genes. Available online at Zenodo.
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Table A.13 – Gene intersection between the defined gene signatures and other signatures in

the literature. Available online at Zenodo.
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