PCA-maSigFun [4] identifies the major(s) gene expression changes within each functional class and evaluates whether these changes are significantly associated to the time. In summary, PCA is applied to the gene-expression submatrix associated to the genes belonging to each functional category. The scores of the relevant principal component(s) of these PCAs are taken as joined expression profile(s) for the functional class. The regression based time-course analysis methodology maSigPro [1] is then applied to the joined profiles (PC scores) to identify function-related subset of genes with expression changes significantly associated to the time. Note that each functional class can result in more than one joined profile when more than one subset of correlated genes exist within that functional category. that we consider that a functional block might contain several patterns of coordinative gene expression. This program returns lists of significant functional classes (an their representative joined profiles) for each of the series included in the experiment.
Parameters for PCA-maSigFun gene selection:
Name | Array1 | Array2 | Array3 | Array4 | Array5 | Array6 | Array7 | Array8 | Array9 | … |
gene1 | 0.5 | 0.2 | 0.7 | 1.3 | 1.4 | 1.0 | 2.1 | 2.4 | 2.6 | … |
gene2 | 0.5 | 0.3 | 0.4 | 0.3 | 0.4 | 0.1 | 0.1 | 0.4 | 0.5 | … |
… | … | … | … | … | … | … | … | … | … | … |
Time | 3 | 3 | 3 | 9 | 9 | 9 | 27 | 27 | 27 | … |
Treatment | Ctr | TrA | TrB | Ctr | TrA | TrB | Ctr | TrA | TrB | … |
Parameters for PCA-maSigFun visualization
To show the trajectories in plots maSig visualization applies clustering methods to group
functional categories with similar trends and summarize the graphical display.
PCA parameters: Threshold for significant gene contribution for the PCA model. This threshold allows the identification of the genes that most contribute to the selected components. It can be computed by applying several procedures: