maSigFun [4] methodology derives from maSigPro [1], a regression-based approach for the analysis of multiple series time-course microarray data. In maSigFun the regression model is not gene-wise fitted as in maSigPro, but to the data matrix composed by the expression values of all genes belonging to the functional class, thereby being one regression model computed for each functional category. The program returns lists of functional categories with a statistically significant expression changes, as a whole, along time and across series. As in maSigPro, the trajectory charts for significant functional categories can be plotted through the maSigFunVisulazation module.
Parameters for maSigFun class selection:
Name | Array1 | Array2 | Array3 | Array4 | Array5 | Array6 | Array7 | Array8 | Array9 | … |
gene1 | 0.5 | 0.2 | 0.7 | 1.3 | 1.4 | 1.0 | 2.1 | 2.4 | 2.6 | … |
gene2 | 0.5 | 0.3 | 0.4 | 0.3 | 0.4 | 0.1 | 0.1 | 0.4 | 0.5 | … |
… | … | … | … | … | … | … | … | … | … | … |
Time | 3 | 3 | 3 | 9 | 9 | 9 | 27 | 27 | 27 | … |
Treatment | Ctr | TrA | TrB | Ctr | TrA | TrB | Ctr | TrA | TrB | … |
Parameters for maSigFun visualization
To show the trajectories in plots maSig visualization applies clustering methods to group
functional categories with similar trends and summarize the graphical display.