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RNA-seq technology is increasingly being used for gene expression profiling. However, the properties of RNA-seq data have not been yet fully established, 

and additional research is needed for understanding how these data respond to differential expression analysis. In this work, we study how  the 

sequencing depth affects the detection of transcripts and their identification as differentially expressed. We evaluate some differential expression 

algorithms  and propose a novel approach, NOISeq. Our results reveal that most existing methodologies suffer from a strong dependency on sequencing 

depth for their differential expression calls, that results in an increasing number of false positives as the number of reads grows. NOISeq models the noise 

distribution from the actual data, so it can better adapt to the size of the data set, and is more effective in controlling the rate of false discoveries. 

AimAim

Fig. 1 SEQUENCING DEPTH. Number of genes with more than 5 reads for several sequencing

depths in three different public datasets [1,2,3]. The more sequenced the more detected. No 

plateau reached, even with 200 million reads.
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96-198 million reads

Fig. 2 BIOTYPE DETECTION

Percentage of gene biotype in 

the brain sample (dataset [2]) 

at different sequencing

depths. The distribution of 

biotypes observed among 

detected features evolve with 

increasing sequencing depth, 

with the relative abundance 

of protein-coding transcripts 

steadily decreasing, whereas 

noncoding genes gain a 

proportional presence.

� No parametric assumptions

� Can work without replicates

� Pairwise comparisons

1 For each gene, exon, transcript… 
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2 Noise distribution: M-D 

values comparing replicates

within the same experimental 

condition:

� NOISeq-real: uses available

3 Probability of differential expression: 

Computed by comparing M-D values of a 

gene against noise distribution.

A gene is declared as differentially

expressed if probability > 0.8.
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DifferentialDifferential expressionexpression & & SequencingSequencing depthdepth

Normalization of expression levels by length

and sequencing depth is recommended.

ixi  samplein  level expression= � NOISeq-real: uses available

replicates (recommended)

� NOISeq-sim: simulates

replicates from a multinomial

distribution with probabilities

proportional to gene counts in 

the samples.

expressed if probability > 0.8.
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Fig. 3

M-D values in 

noise (black dots) 

and for

differentially

expressed genes 

(red dots).

ConclusionsConclusions

� The sequencing depth affects the detection and expression quantification of the transcripts.

� As more sequencing output is considered, the diversity and quantity of detected off-target RNA species increase.

� NOISeq method shows a good performance when comparing it to other differential expression methods: Fisher’s Exact

Test (FET), edgeR [5], DESeq [6] and baySeq [7].

� NOISeq and FET are more robust to sequencing depth than the other methods: the number of differentially expressed

genes keeps similar at increasing sequencing depths.

� NOISeq maintains good True Positive and False Positive rates when increasing sequencing depth, while FET shows a poor

detection rate and the other methods generate an increasing number of False Positives.

Fig. 4 Precision-recall curves (A) and false discovery rates (B) for the 

differential expression methods compared on data set [2] using RT-PCR 

results as a gold-standard. NOISeq outperforms the other methods (A) 

while keeping a low false discovery rate (B).

FET method is Fisher’s Exact test. “nlc” means “no length correction” 

and “RPKM” is Reads Per Kilobase and per Million Reads [4].

A B Fig. 5 Differentially

expressed genes according 

to sequencing depth for  

each dataset and method 

(nlc). NOISeq and FET 

results are more robust to 

sequencing depth than the 

other methods. 
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Fig. 6 True positives (TP) and false 

positives (FP) at each sequencing depth. 

TP and FP were obtained applying the 

differential expression methods on dataset 

[2] and comparing the results to RT-PCR 

positive and negative genes. NOISeq gets 

a nice balanced rate of TP and FP. FET 

obtains a low FP rate, while the other 

methods present a high FP rate.


