Differential expression in RNA-seq: A matter of depth
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Aim (RNA-seq technology is increasingly being used for gene expression profiling. However, the properties of RNA-seq data have not been yet fully established,\
and additional research is needed for understanding how these data respond to differential expression analysis. In this work, we study how the
sequencing depth affects the detection of transcripts and their identification as differentially expressed. We evaluate some differential expression
algorithms and propose a novel approach, NOISeq. Our results reveal that most existing methodologies suffer from a strong dependency on sequencing
depth for their differential expression calls, that results in an increasing number of false positives as the number of reads grows. NOISeq models the noise

distribution from the actual data, so it can better adapt to the size of the data set, and is more effective in controlling the rate of false discoveries. )
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\ Gonclusions

» The sequencing depth affects the detection and expression quantification of the transcripts.
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