OMICS MASTER

Introduction to NGS Technologies for Variation Studies

IT4Innovations Bull

Outline

1) Different Sequencing Technologies

2) Genomics Data Analysis Pipeline

3) Personalized Medicine

Outline

1) Different Sequencing Technologies

2) Genomics Data Analysis Pipeline

3) Personalized Medicine

Single gene- protein technologies

- 1952 Electrophoresis
- 1969 FISH
- 1972 Cloning
- 1975 Southern blot
- 1977 DNA sequencing
- 1983 RFLP realization
- 1985 PCR. DNA fingerprinting

Omics technologies

- 1988 arrayed DNAs were used
- 1991 oligonucleotides are synthesized on a glass slide through photolithography (Affymax Research Institute)
- 1995 DNA Microarrays
- 1997 Genome wide Yeast Microarray

Omics technologies

Microarrays

Next GenerationSequencing (NGS)

NGS technologies

How do these technologies work?

NGS technologies

Cost-effective
Fast
Ultra throughput
Cloning-free
Short reads

NGS technologies

Comparison

Roche 454

- Long fragments
- •Errors: poly nts
- Low throughput
- Expensive
- De novo sequencing
- Amplicon sequencing
- RNASeq

Illumina

- Short fragments
- Errors: Hexamer bias
- ·High throughput
- Cheap
- Resequencing
- De novo sequencing
- ChipSeq
- RNASeq
- MethylSeq

SOLID

- Short fragments
- Color-space
- High throughput
- Cheap
- Resequencing
- ChipSeq
- RNASeq
- MethylSeq

Most common applications of NGS

Most common applications of NGS

Outline

1) Different Sequencing Technologies

2) Genomics Data Analysis Pipeline

3) Personalized Medicine

Genomics Data Analysis Pipeline (1)

Genomics Data Analysis Pipeline (2)

Preprocessing + QC

- Sequence cleansing
- Base quality
- Remove adapters
- Remove duplicates

FASTQ file

Mapping + QC

- Mapping (HPG)
- Remove multiple mapping reads
- Remove low quality mapping reads
- Realigning
- Base quality recalibrating

BAM file

Variant calling + QC

- Calling and labeling of missing values
- Calling SNVs and indels (GATK) using 6 statistics based on QC, strand bias, consistence (poor QC callings are converted to missing values as well)
- Create multiple VCF with missing, SNVs and indels

VCF file

Variant and gene prioritization + QC

- Counts of sites with variants
- Variant annotation (function, putative effect, conservation, etc.)
- Inheritance analysis

 (including compound heterozygotes in recessive inheritance)
- Filtering by frequency with external controls (dbSNP, 1000g, ESP) and annotation
- BiERapp / TeAM

Primary analysis

Gene prioritization

Genomics Data Analysis Pipeline (3)

HPG Aligner is free and open source. Documentation and software are available at http://www.opencb.org/projects/hpg/doku.php?id=aligner:overview

> There is also a highly efficient version for RNA-seq

Run time (minutes)

Introduction to Next Generation Sequencing

250

300

HPG Variant, a suite of tools for HPC-based genomic variant annotation variant = V

EFFECT: A CLI and web application, it's a *cloud*-based genomic variant *effect* predictor tool has been implemented (http://variant.bioinfo.cipf.es, *Medina 2012 NAR*)

VCF: C library and tool: allows to analyze large VCFs files with a low memory footprint: stats, filter, split, merge, etc. Example: hpg-variant vcf –stats –vcf-file ceu.vcf

- CellBase (Bleda, 2012, NAR), a comprehensive integrative database and RESTful Web Services API, more than 250GB of data and 90 tables exported in TXT and JSON:
 - Core features: genes, transcripts, exons, cytobands, proteins (UniProt),...
 - Variation: dbSNP and Ensembl SNPs, HapMap, 1000Genomes, Cosmic, ...
 - Functional: 40 OBO ontologies (Gene Ontology), Interpro, etc.
 - Regulatory: TFBS, miRNA targets, conserved regions, etc.
 - System biology: Interactome (IntAct),
 Reactome database, co-expressed genes.
- NoSQL and scales to TB

Project: http://bioinfo.cipf.es/compbio/cellbase
Wiki: http://docs.bioinfo.cipf.es/projects/cellbase/wiki

- Genome scale data **visualization** plays an important role in the data analysis process. It is a big data management problem.
- Features of **Genome Maps** (Medina, 2013, NAR; ICGC data analysis portal)
 - First 100% HTML5 web based: HTML5+SVG (inspired in Google Maps)
 - Always updated, no browser plugins or installation
 - Data taken from CellBase, remote NGS data, local files and DAS servers: genes, transcripts, exons, SNPs, TFBS, miRNA targets, etc.
 - Other features: Multi species, API oriented, easy integration, plugin framework, etc.

Outline

1) Different Sequencing Technologies

2) Genomics Data Analysis Pipeline

3) Personalized Medicine

Personalized Medicine

Personalized medicine: just about a better understanding of the **relationship phenotype-genotype**

- The future of personalized medicine is strongly based on genomics
- Personalized medicine is based on the availability of diagnostic biomarkers
- Genome sequencing offers ALL this information (if properly analyzed)

NGS prices will be soon affordable

- While the cost falls down, the amount of data to manage and its complexity raise exponentially. Soon, costs will be competitive enough to be used in clinic
- The problem is... are we ready to deal with this?

Personalized Genomic Medicine

Phase I: generating the knowledge database

Personalized Genomic Medicine

Phase II: applying the knowledge database

From genetic to genomic medicine

Some examples

- Low initial investment
- Already existent infrastructure
- Quick implementation
- Easily implementation as a cloud service that guarantees sustainability

	Conventional sequencing	NGS (with capture)
Marfan syndrome	1300€ 2 genes, 75 exons	900€ 3 genes, 237 exons
Hereditary deafness	12500€ 36 genes 1500 exons	1100€ 38 genes > 1500 exons

What are the real storage requirements?

Hereditary diseases: 1 patient = 1 genome

Cancer: 1 patient = 1 genome + x disease genomes

Now we store everything (>80GB/genome).

Once QC and software reach an acceptable standard of quality we will store only VCF files (or similar)

BiERapp: Discovering Variants

Interactive web-based tool for easy candidate prioritization by successive filtering

BiERapp: the interactive filtering tool for easy candidat priorization

New variants and disease genes found with WES and successive filtering

The final schema: diagnostic and discovery

Diagnostic by targeted sequencing (panel of genes)

Future is now

Gattaca (1997)

Conclusions

NGS technologies allow us to deal different problems in omics scenarios

- An optimal pipeline for Genomics Data Analysis + modules for discovering and diagnostic are efficient resources in several areas: Biology, Medicine...
- Genomics data are a challenge in the big data context