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h for the analysis of transcriptomics data that integrates functional annotation of
gene sets with expression values in a multivariate fashion, and directly assesses the relation of functional
features to a multivariate space of response phenotypical variables. Multivariate projection methods are used
to obtain new correlated variables for a set of genes that share a given function. These new functional
variables are then related to the response variables of interest. The analysis of the principal directions of the
multivariate regression allows for the identification of gene function features correlated with the phenotype.
Two different transcriptomics studies are used to illustrate the statistical and interpretative aspects of the
methodology. We demonstrate the superiority of the proposed method over equivalent approaches.

© 2008 Elsevier Inc. All rights reserved.
Introduction

Gene expression profiling is used to study the gene regulatory basis
of phenotypic or developmental characteristics. Statistical analysis of
transcriptomics data is normally addressed through a two-step
process: first, a statistical test is performed to derive a P value for
the association of individual gene expression values to the phenotype
or experimental condition(s), and a number of bsignificant genesQ are
selected on the basis of an arbitrary P value threshold. Most commonly
used methods apply modifications of the t statistics or ANOVA to
generate hypothesis testing of differential expression [1–4]. Secondly,
selected genes are further analyzed to identify their relevant
association to cellular functionalities [5,6]. Fisher's exact test, the
Kolmogorov-Smirnov test, or the chi-squared are common statistics to
identify functional classes with a significant enrichment within the
pool of differentially expressed genes [7]. This widely used approach
presents a number of drawbacks. On one hand, the univariate nature
of the by-gene statistical assessments implies that any informative
correlation pattern within gene expression will be ignored. On the
other hand, strong P value corrections need to be applied to deal with
l rights reserved.
the concomitant multiple testing scenarios and this can seriously
hamper the identification of significant features on large datasets [8].
Furthermore, as functional assessments—which paradoxically have
their foundation on the correlated nature of gene activity—are
performed after univariate gene selection, results are dependent on
the P value cutoff of choice, which can be problematic. Thus, too strict
P value thresholds may lead to univariately nonsignificant genes (that
are in fact significant in the multivariate space, but remain
undetected) while too permisive cutoffs may result in multivariate
important features getting lost among irrelevant information. Finally,
when the target phenotype is not composed by a single variable but a
space of different measurements (e.g., age, gender, different clinical
parameters), the evaluation of differential expression under a
univariate strategy can imply multiple and difficult assessments.

Multivariate approaches to gene expression analysis try to overcome
these limitations. Principal component analysis (PCA), factor analysis, and
multiple correspondence analysis are multivariate space reduction
methodologies that exploit the correlation structure in the data to
identify relevant patterns of variation [9,10]. These approaches have been
applied to the analysis of transcriptomics data and have showed their
potential in capturing relevantassociations in themultivariate expression
space that would escape to univariate analysis [11–13]. Several authors
have proposed different strategies for deriving gene-associated
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significance values of differential expression in this multivariate analysis
context. Lu et al. [13] used the Hotelling T2—a multivariate extension of
the univariate t statistics—to select significant genes, and proposed a
recursive method to deal with the singular data structures that appear
when the number of variables greatly exceeds the number of observa-
tions. Landgrebe et al. [14] applied ANOVA on PCA results to identify
components with a significant difference between experimental groups
and applied a VIP-like statistics to evaluate component significance.
Nueda et al. [15] employed the gene leverage along with a permutation
Fig. 1. PCA analysis of toxicogenomics data. Samples are labeled by the treatment group: H
dose; CO, placebo; UT, untreated control. _6, _24 and _48 denote hours of administration. Cl
with gene expression data. (b) PCA score plot on physiological variables. (c) PCA score plot
test to find significant contributions to the multivariate projection. In all
these examples data analysis focuses exclusively on expression values
and does not incorporate a priori knowledge. Approaches that consider
the functional role of geneswhile trying to capture the cooperative acting
of the set of genes as a whole are, e.g., the so-called gene set methods,
suchas theGSEA [16] and FatiScan [17]. In thesemethodologies, genes are
ranked according to a measure of differential expression and the
enrichment of functional classes towards the extremes of this ranking,
rather than a single group of genes, is tested. Thesemethods have proven
I, high bromobenzene dose; ME, medium bromobenzene dose; LO, low bromobenzene
oseness in the projected space indicates similarity between samples. (a) PCA score plot
on functional variables.



Fig. 1 (continued).
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to be very sensitive as they do not require genes to be significantly
declared, but still follow a prior univariate test to generate the gene rank
which, on the other hand, can normally only be derived for two-class
problems. Recent work has tried to combine multivariate statistics with
functional assessment toovercomesomeof the limitationsof thegene set
methods. Kong et al. [18] proposed a methodology in which functional
expression submatrices—i.e., the set of gene sharing the same function—
were used to create projected functional subspaces which subsequently
were tested by Hotelling T2 statistics for their ability to separate between
treatments. The same basic idea, but with a different statistical approach,
is followedbyNettleton et al. [19]. These authors apply themultiresponse
permutation procedure (MRPP) [20] to test against the null hypothesis of
invariant distribution of gene expression among different treatment
classes. Different in their purpose are the methods which combine
multivariate expression with gene function to identify significant co-
occurrences of functional classes [21,22] or predict gene function from
transcriptomics data [23,24].

Still, all thesemethodologies dealwith a single response variable—at
twoormore levels—if any, to evaluate significant functional associations.
Very little has been done in the multivariate analysis of complex
phenotypic determinations that follow transcriptomics profiling. Such
data are of special relevance in biomedical research where composite
clinical framesneed to beunderstood in the lightof gene activity [25,26].

In this work we present a novel approach for the analysis of
transcriptomics data that integrates functional annotation and
expression values in a multivariate fashion and directly assesses the
relation of functional features to a multivariate space of response
variables. Our method benefits from the correlation patterns between
both gene and gene functions to identify a functional signature that
best predicts the phenotypic outcome.

Results

Troxicogenomics dataset

PCA analysis of both gene expression data (Fig. 1a) and phenotypic
variables (Fig. 1b) revealed a first component of variability that
basically differentiates the high bromobenzene dose treatment at 24
and 48 h from the rest of the conditions. A pretty similar PCA score
plot was found for gene expression and phenotypic variables,
indicating that the major pattern of the variability in both datasets
had similar structures and related to the intensive administration of
the drug.

The initial GO term filter procedure generated a total of 1140 GO
terms from the three main GO branches. After PCA-based transforma-
tions 823 functional components were created with an average
explained variance of 40k. In most cases GO terms were represented
by one functional variable and only in a few cases up to two variables
were derived by a single functional class. Table 1 summarizes the
results of the analysis procedure.

PCA analysis of the new matrix of functional variables showed a
projected space similar to that obtained previously with gene
expression and clinical data (Fig. 1c), but explained variance for the
first and most discriminating component was clearly higher (46k
with functional variables versus 20k with gene expression data),
indicating a more compact signal in the transformed data. PLS (partial
least squares) regression was then applied to relate the measured
physiological parameters to the new space of functional variables. The
number of components was selected by leave-one-out cross-valida-
tion, resulting in a 7-component model with maximal overall
predicting value. Analysis of the R2, Q2, and VIP parameters for
individual physiological variables permitted the identification of
differences in relation to the functional data (Table 2). Variables
such as ASAT, bilirubin, LDH, and ALAT showed important contribu-
tions (high VIP) and were well predicted by the model (high Q2),
which means that these parameters are highly related to the gene
functional response triggered by the toxic compound. Other variables
such as total protein or albumin were low contributors to the model
and failed to be predicted, indicating their poor association to the gene
expression pattern revealed in the analysis. These variables were
removed from the final PLS model which obtained an average
prediction error of 0.58 and a determination coefficient R2 of 0.75,
both highly significant (P value ~ 0). It is worth noting that R2 values
were in general high, also for poorly predicted variables, which



Table 1
Quantitive figures in the analysis procedure of the toxicogenomics and breast cancer datasets

Origina data PCA transformation to funcional data PLS model

Probes Annotated
GO terms

GO term
selection

Functional
variables

Mean expl.
var.

Mean GO
level

No. comp. Average R2 Average Q2 Significant
funct. vars.

Toxicogenomics 2665 7411 1140 823 0.4 6.7 7 0.75 0.58 50
Breast cancer 22283 10940 3129 1901 0.44 6.2 4 0.45 0.3 65
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illustrates the optimistic nature of this parameter to evaluate the
validity of a regression model.

Graphical analysis of the PLSmodel discovers further aspects of the
data. The score plots associated with the functional and physiological
data matrices showed a stronger differentiation between the high
bromobenzene doses at 24 and 48 h and the remaining samples
(Figs. 2a and 2b), indicating that the physiological response to the
gene expression effects of toxic compound is mainly concentrated
under these conditions. Additionally, the Y biplot of the PLS model
(Fig. 2c) revealed a positive correlation (same orientation in the
projected space) of these high toxicity levels with the most responsive
cellular compounds, while other parameters, such as glucose and
kidney weight, showed a negative relationship. In fact, increased
levels of ASAT, bilirubin, LDH, ALAT, and phospholipids have been
associated with the response to xenobiotics and are considered as
markers of toxicity [27], while plasma glucose concentrations tend to
decrease for the imbalance in energy requirements [27].

Selection of significant functional variables in the PLS model was
done by resampling methods. Fifty functional classes were selected at
a P value b 0.05. Functional variables are represented in the Y biplot
by open dots (Fig. 2c). Significant variables are depicted colored.
Significant GO terms include response to stimulus, heme binding, fatty
acid metabolic process, oxidoreductase activity, glutathione transferase,
apoptosis, ribosomal unit, and cytoskeleton (see Supplemental Material
T1 for a complete list). Fig. 3 shows the DAG of the significant
functional terms corresponding to the Biological Process GO branch.
Significant functional categories extensively explain the cellular
adaptative response to drug administration which includes conjuga-
tion to glutathione by glutathione transferase, modification in
oxidative, heme containing enzymes, activation of the ribosome
machinery for protein synthesis, and cytoskeleton reorganization [27].
Table 2
PLS model parameters for the Y data structure (physiological variables) of the
toxicogenomics dataset

Physiological variable R2 Q2 VIP

ASAT 0.94 0.81 5.54
Bilirubin.tot 0.89 0.67 5.02
LDH 0.92 0.67 5.66
ALAT 0.90 0.66 5.27
Phospholipids 0.81 0.61 4.16
Liver.BW 0.79 0.51 3.23
Liver 0.72 0.48 2.38
Body.Weight 0.59 0.43 2.14
Glucose 0.58 0.43 2.69
Creatin 0.72 0.43 4.41
Kidney.BW 0.61 0.39 2.76
GSH.corr 0.57 0.37 3.03
Triglycerides 0.63 0.36 1.77
Cholesterol 0.67 0.35 3.64
Urea 0.54 0.27 1.97
ALP 0.72 0.27 3.05
AG.ratio 0.59 0.15 3.05
Tot.Protein 0.53 −0.03 2.85
Kidneys.weight 0.20 −0.09 0.78
Albumin 0.38 −0.12 1.98
Breast cancer dataset

The breast cancer dataset contained nearly 10 times the number
of probes of the toxicogenomics dataset. Still data transformation by
PCA on functional classes rendered a not very different compression
result: 1901 functional variables with an averaged explained variance
of 44k (Table 1). PCA and PLS score plots of both gene expression and
functional data showed a different distribution of p53+ and p53-
samples along the first component, which was more pronounced
when samples were labeled by their ER status (Figs. 4a and 4b). This
is in agreement with observations in the original work on the
incompleteness of the p53 sequence determinations to establish the
p53 deficiency status in breast tumors [28]. The PLS analysis with
functional variables resulted in a 3-component model with signifi-
cant Q2 and R2 parameters. Again, only a subset of clinical variables
was well predicted by the model, namely the p53seq, ER status,
histological grade, and PgR status for which the mean R2 and Q2 were
0.45 and 0.30, respectively (Supplemental Table T2). Furthermore, the
Y loading plot of the PLS model showed a negative correlation
between the p53 genotype and the ER status and histological grade
(Fig. 5), which has been described in previous reports [29]. Sixty-five
significant functional variables were detected by resampling. The
corresponding Gene Ontology terms pointed to functions related to
the immune response, cell division and proliferation, cytoskeleton
organization, estrogen receptor signaling—already highlighted by
Miller and co-workers [28]—and also to novel functional activities
such as activation of JNK activity, fiber development, and chemokine
activity. The complete list of significant functional terms in the breast
cancer study is provided as supplemental material T1.

Comparison with other functional assessment methods

We compared the functional class results in the toxicogenomics and
breast cancer examples, respectively, to two traditional univariate
pathway analysis methods, namely the enrichment analysis by the
Fisher exact test [30] and the Gene Set Enrichment Analysis provided by
the FatiScan [17]. Additionally, we compared our results in both data
examples to those obtainedwith themultivariate approach proposed by
Konget al. [18]where theHotelling T2 statistics is used tofind treatment-
associated significant differences between functional class-defined gene
expression submatrices. GO term comparisons were done using the
Blast2GO software [31]. In contrast to our strategy, all comparing
methodologies required the selection of two contrasting conditions—HI
bromobenze treatment vs control in the toxicogenomics example, and
p53seq label for the breast cancer study—to define the analysis. In both
study cases, traditional univariate approaches provided a reduced and
semantically less rich, i.e., consisting of more general terms, set of
significant functional classes (see Supplemental Table T1). On the
contrary, the Hotelling T2 method by Kong et al. consistently generated
a far too large selection of GO classes (256 and 1520 GO terms for
toxicogenomics andbreast cancer datasets, respectively)which included
most of the functions detected as significant by our method and many
others suspiciously false positives, such as neural activity-associated
processes in the case of the toxicogenomics liver samples and eye and
bone specific functions in the case of the breast cancer data. Detailed
information in functional results is provided in Supplemental Table T1.
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Discussion

The proposed method integrates in one analysis three basic elements
of transcriptomics studies: gene expression data, functional annotation,
and phenotype characteristics, providing a direct relationships between
gene function and response variables. The integrative analysis of
transcriptomics data has been the subject of recent statistical develop-
ments [18,32–34]. Our method differs from other approaches in that it
translates gene expression to a distinct expression signature of the
functional class. By applying PCA on gene sets that share a function, the
major expression patterns associated to the functional class can be
identified and used as novel variables to study the phenotype. With this
approach, two potentially critical problems can be overcome based on the
assumption that important genes are correlated to similar genes. First of
all, theunimportantgenesaredramatically reduced innumberswhichcan
be decisive to be able to detect significant variations. Secondly, the
important (as well as unimportant) variation is expressed in a reduced
form by scores from principal component analysis. Hence, ideally, each
phenomenon appears only once and therefore has a better chance of
influencing the further analysis. A key element to achieve this is the
criterion for selecting Gene Ontology terms and functional components.
We applied a simple filtering procedure on the set of initial GO terms to
avoidannotation redundancies thatarise fromthehierarchical structureof
the Gene Ontology. In this way candidate GO terms are guaranteed to
collect at least partially different annotation sets. More important even is
the criterion for selecting functional components. Component selection in
dimension reduction approaches are habitually based on cross-validation
or scree-plot analysis [35]. These procedures consist of building and
evaluating different models by leaving out one or more observations that
are then predicted by the model built, or using as many components as
needed to reach a given amount of explained variance. In our case, the
purpose of component selection is to identify a relevant expression
features of the functional class, rather than to test prediction ability or
sufficiently explain the functional submatrix. Therefore we choose a
criterion that would select functional variables when they collect an
amount of variance above what could be considered random noise. The
effect is an important reduction in functional classes from the original GO
set and a selection of terms of medium hierarchy depth level (mean value
around 6.5) with a sufficient explanatory capacity (~40k on average).

Compared with common univariate statistical approaches for the
assessment of gene functional enrichments [5,16,17], the method
proposed in this work differentiates for its consideration of the
coordinative behavior between functional classes—not only within—
and therefore potentially capturing the cooperative activity of functional
processes. This implies that covariance between genes is particularly
stressed in our approach, since a functional class of differentially
expressed genes but not correlated gene members might not be
detected by ourmethod but could be identified by a univariate strategy.
Compared to another published multivariate method, our approach
seems to achieve a good trade-off between sensitivity and selectivity in
the selection of significant functional classes.Wepostulate that the two-
step strategyof ourmethod—creation of functional variables followedby
PLS inference—and significance criterionbasedon thedistributionofVIP
values of the randomized PLS models are key for obtaining a sensible
selection of functional variables. The simple randomization of expres-
sion values in functional submatrices would tend to create in too
compacted Hotelling T2 null distributions that would declare as
significant an excessive number of variables in the Kong et al. method.

Furthermore an additional aspect in our approach is that the analysis
is not restricted to pairwise comparisons between conditions, but it can
evaluate the composite phenotypedynamically and for the relationships
within outcome parameters. This last consideration of multiple
phenotypic characterizations in microarray datasets was likewise
addressed by Fellenberg et al. [36]. In this work, Correspondence
Analysis was used to study relationships between transcriptomics data
and extensive sample annotations. The authors developed an interesting
method to extract relevant phenotypic characteristics and map them to
gene expression features by multivariate projection methods. However,
this work does not incorporate the gene functional information which
can provide amore interpretable result, in terms of biological processes,
to the relationship phenotype-transcriptome, and also does not exploit
an inferential relationship, such as PLS does, to achieve an optimized
projection of the gene expression and the phenotypic spaces.

All together, our results indicated that the proposed method is
effective in extracting informative functional signatures that differ-
entially correlate with diverse aspects of the phenotype. We believe
that this approach will be of great help in the study of the molecular
mechanisms behind the observed characteristics of organisms and to
unravel genotype-phenotype functional relationships.

Material and methods

The proposed method

Schematically, our proposal uses multivariate projection methods
to obtain new correlated variables for gene sets which share a given
function. These new bfunctional variablesQ are then used to perform
a multivariate regression on a set of response variables. The analysis
of the principal directions of the multivariate regression allows for
the identification of gene function features correlated with the
phenotype. The proposed method consists of the following steps:

1. Find the functional annotation of the genes in the transcriptomics
dataset. For each functional term, create a bsubexpressionmatrixQ
with all associated genes.

2. Performprincipal component analysis in eachof thenewexpression
matrices and select a numberof components that collect nonrandom
variation.

3. Collect the PCA scores of the selected components into anewmatrix
of bfunctional variables.Q These functional variables represent
coordinative expressionpatterns of genes associatedbya functional
label.

4. Use this newmatrix to perform partial least square (PLS) regression
on the response variables.

5. Select significant functional variables in the PLS by bootstrap.

In principle, any functional vocabulary can be used to elaborate
functional variables. In this work we have taken the Gene Ontology
scheme (http://www.geneontology.org) as it is the most extensive
vocabulary for the description of gene function. We considered all
termspresent in theDirectAcyclicGraph (DAG)encompassedby thegene
collection of the transcriptomics datasets but removing all annotation
redundant terms. A term is considered annotation redundant within a
given gene collection if it has a child termwith identical gene annotation
set. For example, if GO:0006915 (apoptosis) has 15 annotated genes and
parent termGO:0012501 (programmed cell death) back-inherits these and
only these 15 genes, then programmed cell death is considered annotation
redundant and removed from the initial set of functional classes.

Principal component analysis projects a data matrix into a space of
lower dimension while keeping most of the variability in the original
data [9].

The PCAmodel for each functional class can be expressed in matrix
notation as

X ¼ ABT þ R;

where A (I×F) is the matrix collecting the F functional variables, B
(J×F) is the loading matrix that indicates the importance of each gene
on each functional variable, and R is the residual matrix. Dimension
reduction is possible when there exists a correlation structure in the
dataset, i.e., where there is a sufficient number of genes with

http://www.geneontology.org
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correlated expressions. In this sense, PCA can be considered as a
summarizing method and in our approach the profile given by the
observations scores of each principal component reflects a coordi-
nated behavior of a group of genes within the functional class and
defines the so-called functional variables. Selection of functional
variables is done based on the amount of variance explained by the
corresponding component, normalized by the number of genes in
Fig. 2. PLS analysis of toxicogenomics data. Samples are labeled by the treatment group: H
dose; CO, placebo; UT, untreated control. _6, _24 and _48 denote hours of administration. (a)
reduction of the functional data. (b) Y_score plot showing the relationships between treatm
shows the projection of both functional and physiological variables. Variables poorly expla
colored when significant.
the functional class. Components—i.e., functional variables—are
selected in this case if their normalized variance is greater than
the average gene variance of the complete dataset.

The relationship between functional variables and phenotypic
variables is analyzed by partial least squares [10]. PLS is a dimension
reduction regression approach which finds a projected space that
maximizes the correlation between independent and dependent data
I, high bromobenzene dose; ME, medium bromobenzene dose; LO, low bromobenzene
X_score plot showing the relationships between treatments according to the dimension
ents according to the dimension reduction of the physiological variables. (c) Y_ biplot
ined by the model are given in gray. Functional variables are represented by dots and
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structures, as well as the explained variability within both
data matrices.

The PLS models the data through the use of the following
expressions,

T ¼ XW4 ¼ XWðPTWÞ−1

X ¼ TPT þ E
Y ¼ TCT þ F

where X and Y are the matrices of functional and physiological
variables, respectively. T is the matrix that maximizes the covariance
betweenX and Y, P the loadingmatrix forX, C the loadingmatrix for Y,
W andW* areweightingmatrices that indicate the importance of each
functional variable in the new projected space, and E and F the
residual matrices for X and Y, respectively.

Each component of the PLS model represents a pattern of
variation that relates independent and dependent variables. There-
fore, by analyzing the weights of functional and response variables
in the PLS model we can identify gene function features that are
associated with the observed phenotype. The significance of the PLS
model is habitually given by the R2 and Q2 statistics, which indicate
respectively the explanatory and predictive power of the model.

The R2 is defined as the fraction of the total sum of squares which is
captured by the model. For a model with F components,

R2 ¼ SSMF

SST
;

where SSM is the sum of squares of the model with F components and
SST is the total sum of squares.

Q2 parameter is given by

Q2
cum Fð Þ ¼ 1−

PRESS Fð Þ
SST

PRESSF ¼
XI

t¼1

r2i ;

which indicates the sum of squares of the prediction errors brQ for the
observations not included in the model during the cross-validation
procedure.
Furthermore, the importance of each functional variable in the
model can be computed by the VIP parameter, which is the sum of the
contributions of the variable to the model components moderated by
the weight of the component. This VIP parameter computes the
influence on Y of every term xk in the model, according to

VIPFK ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XF

f¼1

w2
fk4 SSYf−1−SSYf

� �� �
4

K
SSY0−SSYF

vuut :

Finally, we include a permutation test to determine the probability
of the computed model parameters to occur by chance and to select
significant functional terms. This permutation is performed on the
original datamatrix and therefore affects the steps of generation (PCA)
and selection (PLS) of functional variables.

Datasets

We have applied the proposed method to two different datasets
The first dataset corresponds to a toxicogenomics study in which

the effect of bromobenzene in liver toxicity in rats is analyzed [27]. In
this experiment, rats are administrated the drug bromobenzene at
three different doses (high, medium, and low) and liver/blood/urine
samples are taken after 6, 24, and 48 h of treatment. There are control
(no administration) and placebo (only drug vehicle administration) rat
groups. For each experimental condition one to three rats were taken
for gene expression profiling and microarray experiments were done
with a dye-swap design on a custom cDNA microarray. Gene
expression information is available for 2665 genes. Additionally,
physiological and morphological determinations were conducted on
the same rats, including body weight (g), kidneys weight (g), kidney/
BW (g/kg), liver (g), liver/BW, bilirubin tot, ASAT, ALAT, LDH, albumin
g/L, ALP (U/L), creatin umol/L, cholesterol (mmol/L), glucose (mmol/L),
phospholipids (mmol/L), triglycerides (mmol/L), tot.protein (g/L), urea
(mmol/L, A/G ratio, GSH corr. (M) [27].

The second dataset is a breast cancer study by Miller and co-
workers [28]. This work explores the relationship between the p53
(TP53) pathway and breast tumor severity. The Affymetrix U133 A
and B human GeneChips (~25,000 probes) were used to assess the
genome-wide transcriptome profile of 251 primary invasive breast
tumors for which detailed information on p53 status (p53+, mutant;



Fig. 3. Gene Ontology Direct Acyclic graph of the pool of Biological Process significant terms detected by the PLS model on functional variables. Term color intensity is proportional to the importance of the functional class in the PLS model.
Hexagonal nodes are the actual selected GO terms. For a fuller view of this figure, please see Appendix A.
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p53-, wt) was available. Additionally tumors were characterized by
their estrogen-receptor (ER) status, Elston histological grade, PgR
status, age at diagnosis, tumor size (mm), lymph node status, DSS
TIME (disease-specific survival time in years), and DSS EVENT
(disease-specific survival event; 1=death from breast cancer,
0=alive or censored).

These two datasets represent two analysis scenarios. The
toxicogenomics dataset contains a multifactorial experimental
design with strong gene expression signals associated to the
treatments. A relative low number of genes and a wide array of
response variables are present. The breast cancer dataset illustrates a
typical cancer study with a large number of cases and a genome-wide
transcriptomics profiling. A few clinical parameters were evaluated
for each patient and gene expression signals are expected to be more
diluted.
Fig. 4. X_score plot PLS model for breast cancer data. PLS model computed with functional
Data preprocessing and analysis

The toxicogenomics dataset was obtained directly from the
authors, normalized by lowess, and centered genewise for each
dye-swap pair as in [37]. Breast Cancer Affymetrix data were
downloaded from the GEO database as global mean normalized
data. Physiological/clinical variables were scaled in all cases and
missing values were imputed by the kth nearest neighbors
algorithm [38]. Gene Ontology functional annotations were
obtained from public repositories. Annotated Gene Ontology DAG
structures were generated with the Blast2GO software [31].
Noninformative reference distributions for the toxicogenomics and
breast cancer dataset were generated by bootstrap. One thousand
bootstrap runs were executed, in each case resampling both
column- (samples) and row-wise (genes). Resampling by columns
variables. Tumor samples are labeled either for their p53 genotype (a) or ER status (b).



Fig. 5. Breast Cancer PLS Y_biplot. Projection of functional and clinical parameters into the first two components of the PLS model. Variables poorly explained by the model given in
gray. Functional variables are represented by dots and colored dark when significant.
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eliminates the relationship between the gene expression and the
phenotype, while rearrangements by rows will destroy the
coordinative structures within each functional class. The P value
corresponding to the PLS model parameters (R2 and Q2) and the
importance of functional variables (VIP) were computed as the
frequency of occurrence of true data values in the respective
reference null distributions. Significance threshold was set to 0.05.

All computations were performed in R, using limma [3], pls [39]
and EMV packages. Scripts are available on request to the authors.
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