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Abstract

Motivation: Functional interpretation of miRNA expression data is currently done in a three step

procedure: select differentially expressed miRNAs, find their target genes, and carry out gene set

overrepresentation analysis. Nevertheless, major limitations of this approach have already been

described at the gene level, while some newer arise in the miRNA scenario.

Here, we propose an enhanced methodology that builds on the well-established gene set analysis

paradigm. Evidence for differential expression at the miRNA level is transferred to a gene differen-

tial inhibition score which is easily interpretable in terms of gene sets or pathways. Such trans-

ferred indexes account for the additive effect of several miRNAs targeting the same gene, and also

incorporate cancellation effects between cases and controls. Together, these two desirable charac-

teristics allow for more accurate modeling of regulatory processes.

Results: We analyze high-throughput sequencing data from 20 different cancer types and provide

exhaustive reports of gene and Gene Ontology-term deregulation by miRNA action.

Availability and Implementation: The proposed methodology was implemented in the

Bioconductor library mdgsa. http://bioconductor.org/packages/mdgsa. For the purpose of reprodu-

cibility all of the scripts are available at https://github.com/dmontaner-papers/gsa4mirna

Contact: david.montaner@gmail.com

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

MicroRNAs (miRNAs) are small non-coding RNA molecules which

participate in post-transcriptional gene regulation (He and Hannon,

2004). They bind to target mRNAs with partial complementarity,

causing translational repression or target degradation (Wei et al.,

2013). Aberrant miRNAs expression has been reported to be linked

to disease (Jiang et al., 2009) and so many genomic experiments are

now being conducted with the aim of clarifying the relationship be-

tween miRNA levels and phenotype. These experiments generally

use microarrays or high-throughput sequencing to record miRNA

expression between different biological conditions, followed by

differential-expression analysis to evaluate the association of each

miRNA to phenotype. It is common in such analyses to first select

the significantly different miRNAs, and then explore their target

genes to infer possible functional consequences of the deregulation of

these miRNAs. Gene function databases, such as the Gene Ontology

(GO) (Ashburner et al., 2000), KEGG (Kanehisa and Goto, 2000) or

Reactome (Joshi-Tope et al., 2005) are commonly used in this second

step. Some authors prefer to first annotate miRNAs onto the func-

tions of their target genes, and then do the functional interpretation

at the miRNA level (Bleazard et al., 2015; Godard and van Eyll,

2015). Despite being less instinctive or intuitive, this approach has

been shown to reduce the effect of biased database information. This

two-step paradigm, known as over representation analysis (ORA),
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has been extensively used in gene expression experiments and is

now, the exclusive method used for miRNA functional profiling.

But even in the gene expression context, ORA approaches have

been legitimately criticized and some major drawbacks have been

described (Dopazo, 2009; Khatri et al., 2012). Most concerning of

these disadvantages is the loss of information caused by using only

a few genes and the egalitarian treatment of these selected genes, a

problem that arises again in the miRNA scenario. In differential

gene-expression analyses for instance, ORA only considers genes

which show large expression differences, whereas small changes in

functionally related gene sets may be more relevant to the underly-

ing biology. Similar biases occur when analyzing miRNA expres-

sion data, but in this case the effect is doubled. On one hand, some

genes may be regulated by a big change in a single miRNA. If this

occurs in an experiment, the miRNA will be identified as differen-

tially expressed and therefore ORA can be used, with the above

mentioned limitations. On the other hand, some other less-robust

gene deregulations may go unnoticed because the miRNAs causing

them do not appear among the most differentially expressed candi-

dates, thus, in such cases the combined gene set effect will be

missed. Furthermore, genes can also be inhibited by the additive

effect of several small miRNA changes (Doxakis, 2010;

Papapetrou et al., 2010). This scenario is common but is usually

neglected in the ORA because the causative miRNAs are unlikely

to be selected in the two-stages approach. Finally, a gene may be

regulated by several miRNAs with opposite expression patterns

(Bleazard et al., 2015). This may induce compensatory effects that,

presumably, are not considered by ORA approaches. As a simple

example of this later situation we can think about a gene modu-

lated by two miRNAs, one of them up regulated in experimental

cases and the other up regulated in controls. The gene will be

down regulated or inhibited in both conditions and hence, is irrele-

vant for case-control comparison. Despite this, ORA algorithms

are likely to identify such genes as relevant in the comparison, be-

cause their regulatory miRNAs will have been selected in the

differential-expression step of the analysis (Godard and van Eyll,

2015).

Thus, the application ORA methodology intrinsically implies a

relatively naive understanding of biology. In the context of gene ex-

pression, the limitations of ORA have already been surpassed by

gene set analysis (GSA) methods (Mootha et al., 2003). GSA

approaches which can successfully model the importance of weaker,

but coordinated changes in sets of functionally related genes, there-

fore reinforcing genomic data interpretation. But, even though GSA

methods have been available for a long time for gene-based experi-

ments, to our knowledge, no GSA-like methodologies have so far

been proposed for functional profiling of miRNA measurements.

This lack of GSA-style applications to miRNA data is not really sur-

prising for two reasons: first, functional annotation is normally at-

tached to genes, thus, in order to interpret miRNA data (for instance

in terms of GO or KEGG), scientists must first define how miRNA

and database information should be linked. For this purpose, mean-

ingful miRNA-to-gene transfer of the experimental evidence is im-

plicitly necessary. Second, most GSA algorithms are such that the

gene-level analysis and the enrichment steps are strongly inter-

dependent and cannot easily be split up. Such lack of flexibility of

most GSA algorithms hinders their re-implementation and usage in

the miRNA context.

For instance in the classical GSEA algorithm (Subramanian

et al., 2005), the statistical significance of the enrichment is eval-

uated using a phenotype-based permutation applied to the gene-

expression data matrix. Thus, the differential-expression step is

carried out within the re-sampling schema, and cannot be changed

without rewriting the algorithm.

In this paper, we propose a novel GSA-type methodology for

functionally interpreting miRNA expression data. Taking advantage

of the additive inhibitor effect that miRNAs may have on genes, we

first propose a meaningful procedure for transferring miRNA differ-

ential expression evidence to the gene level via a differential inhib-

ition score. Then we use logistic regression models (Montaner and

Dopazo, 2010; Montaner et al., 2009; Sartor et al., 2009) to inter-

pret this gene inhibition information in terms of gene sets.

To exemplify the applicability of our method here we analyze 20

different real datasets taken from The Cancer Genome Atlas project

(McLendon et al., 2008). Tumor samples are compared to normal

tissue in a differential miRNA expression analysis and then, func-

tional profiling in terms of GO is carried out for each of them.

Several GO terms already known to be cancer related appear as

deregulated in the different cancers, validating the suitability of our

approach. We hope our algorithm, implemented in the R/

Bioconductor package mdgsa (Montaner and Dopazo, 2010), will

be useful to data analysts, but also that the extensive supplementary

materials presented in this paper would constitute a valuable asset.

2 Materials and methods

At the time of writing this paper 32 datasets were registered in the The

Cancer Genome Atlas project. We downloaded and analyzed 20 of

these: those with miRNA expression information, measured using

Illumina HiSeq technology (Bentley et al., 2008), which contain both

tumoral and healthy samples. Table 1 shows the reference for the down-

loaded datasets and the number of samples included in each analysis.

Preprocessed miRNA expression-count matrices were down-

loaded from The Cancer Genome Atlas data portal https://tcga-

data.nci.nih.gov/tcga. Differential expression analysis, comparing

primary tumor samples to solid normal tissue, was carried out using

an unpaired approach for all 20 datasets. In addition, we also per-

formed a paired analysis for 17 of them: the datasets containing

tumoral and normal samples from the same individual. These

miRNA-level analyses were done using the Bioconductor

(Gentleman et al., 2004) library edgeR (Robinson et al., 2010).

Thus, for each comparison, P-values and test statistics were ob-

tained at the miRNA level. The p-value represents the strength of the

differential miRNA expression between cases and controls, while the

sign of the statistic indicates the sense, or ‘direction’, of that differ-

ence; in our case, positive statistic values indicate overexpression in

cases compared to controls, and negative statistic values indicate

underexpression. For each miRNA, these two quantities can be com-

bined in a unique index, accounting for the strength and sense of the

differential expression using the following transformation:

r ¼ �signðstatisticÞ � logðP�valueÞ (1)

The computed values r are comparable across different miRNAs

as they represent the original P-values. In addition, r also retains the

sign of the test statistic, preserving the information about the ‘direc-

tion’ of the overexpression. It is therefore an index that ranks the

miRNAs according to their expression-level differences; from those

which are more overexpressed in cases, (the ones with the highest

positive values), to those which are more underexpressed in cases,

(indexes which are more negative). According to the definition,

miRNAs with an r index value close to zero are those with similar

expression levels in both cases and controls, that is, the ones that are

not differentially expressed. In this case we derived our r values

2 F.Garcia-Garcia et al.
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using edgeR although any other statistical test, even fold changes

could be used to obtain a ranking index provided that it has the

above mentioned characteristics.

2.1 Adding the effect on genes
MicroRNA molecules regulate gene expression via complementary

base-pairing (Bartel, 2004), therefore, the inhibition of certain gene

must be proportional to the amount of miRNA molecules targeting

it. Moreover, many different miRNAs may intercept the same gene,

thus having an additive effect on its expression levels (Gusev, 2009;

Lim et al., 2005). Hence, the interference of a gene must be directly

related to the sum of the expression levels of its binding miRNAs.

When comparing biological samples, differences in miRNA expres-

sion between experimental conditions can be reflected in different

gene-inhibition patterns, and the differential inhibition of each gene

might be proportional to the sum of the expression differences of its

binding miRNAs. We can express this using the formula:

ti ¼
X

j2Gi

rj (2)

where ti represents the increment in the inhibition of gene i, rj ac-

counts for the differential expression of miRNA j, and Gi is the set

of microRNAs targeting gene i. The utility of similar scores in sum-

marizing the effect of several miRNAs on a given gene has been

described before (Lee et al., 2012; Morin et al., 2008).

Using Equation 2 we can ‘transfer’ the relevant information in

our experiment from the miRNA to gene level, i.e. from miRNA

differential-expression values to gene differential-inhibition esti-

mates. Carrying out the computation for all the genes in an experi-

mental dataset, we can derive a new transferred index which ranks

genes according to their differential inhibition, caused by miRNA

activity between biological conditions. Genes showing the highest

differential inhibition index would be those more likely to be inter-

cepted in cases, while those showing the lowest indexes should cor-

respond to genes that are more inhibited in controls compared to

cases. Genes with a differential inhibition index close to zero are

those showing no significant differences in terms of their regulation

by miRNAs. Figure 1 shows a summary of the interpretation of

miRNA and gene-level results.

Here, we should note that a strong differential inhibition pattern

for a gene may be due to a very big differential expression in just

one of the miRNAs targeting it. But it is also likely that some of

these big effects are caused by the additive effect of a particular gene

being targeted by many different miRNAs, each with weaker indi-

vidual differential-expression patterns between conditions.

It is also worth highlighting that, genes presenting no differential

inhibition may be those for which none of their regulatory

microRNAs are differentially expressed, but also those for which the

differential expression patterns of their binding miRNAs cancel each

other out by adding up to zero. For instance, in a case control experi-

ment, the first scenario would be that none of the miRNAs targeting a

given gene are differentially expressed. In which case, all the rj values

in Equation 2 would be equal to zero, as would their sum as well as ti

parameter. The second scenario would occur when a subset of the

microRNAs targeting the gene are overexpressed, increasing the gene

inhibition in cases, but another subset of miRNAs are underexpressed,

increasing the inhibition in controls. Thus, both inhibition effects will

then cancel each other out, resulting in no regulatory differences

Fig. 1. Interpretation of the differential expression statistic at miRNA level and

the transferred index at gene level

Table 1. Analyzed datasets

ID Total Cases Controls Paired Description

BLCA 271 252 19 19 Bladder Urothelial Carcinoma

BRCA 807 720 87 86 Breast invasive carcinoma

CESC 218 215 3 3 Cervical squamous cell carcinoma

COAD 243 235 8 0 Colon adenocarcinoma

ESCA 113 102 11 11 Esophageal carcinoma

HNSC 519 475 44 43 Head and Neck squamous cell carcinoma

KICH 91 66 25 25 Kidney Chromophobe

KIRC 311 240 71 68 Kidney renal clear cell carcinoma

KIRP 245 211 34 34 Kidney renal papillary cell carcinoma

LIHC 283 233 50 49 Liver hepatocellular carcinoma

LUAD 474 428 46 39 Lung adenocarcinoma

LUSC 376 331 45 45 Lung squamous cell carcinoma

PAAD 100 96 4 4 Pancreatic adenocarcinoma

PCPG 182 179 3 3 Pheochromocytoma and Paraganglioma

PRAD 117 100 17 17 Prostate adenocarcinoma

READ 93 90 3 0 Rectum adenocarcinoma

SKCM 75 74 1 0 Skin Cutaneous Melanoma

STAD 345 306 39 39 Stomach adenocarcinoma

THCA 558 499 59 59 Thyroid carcinoma

UCEC 418 386 32 19 Uterine Corpus Endometrial Carcinoma

Columns of the table display: TCGA disease ID, the total number of samples in the analysis, the number of tumoral samples, the number of control samples

(solid normal tissue), the number of paired samples available in the dataset and the cancer type.

Gene set analysis for microRNA data 3
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between cases and controls for that gene. In this second case some rj

values will be positive and some will be negative, but their sum will

yield a ti value close to zero.

Obviously, to implement Equation 2 or, more generally, to be

able to ‘transfer’ information from the miRNAs to their target genes,

the relationship between miRNAs and their gene targets must be

previously defined. In this study we took this information from the

TargetScan Predicted and Conserved Targets database (Friedman

et al., 2009) but any other source of similar information could be

used with our software. Currently, most of the information available

regarding miRNA targets is predicted by computational approaches

which have limited accuracy (Selbach et al., 2008) and which in-

corporate functional biases (Bleazard et al., 2015). Thus, care

should still be taken when interpreting or validating results. In any

case, our method and software will remain valid and can continue

to be used as this database become more curated, or should other,

more-sophisticated sources become available in the near future.

It is worth noting here that Equation 2 can be easily modified to

incorporate weights accounting for the quality of the miRNA-target

information. Moreover, besides the knowledge aspect, weighting

can also be used to improve the modeling by including extra biolo-

gical information, such as the number of target sites genes have or

gene expression levels, when available.

Equation 2 involves genes as miRNA targets but, as it is, it does

not account for whether the genes are expressed or not. But, given

that mRNA bridges miRNA functionality, if gene expression data

were available alongside with miRNA levels, it would be sensible to

incorporate them to the analysis. In such case, researchers may pre-

fer to restrict the functional interpretation of the transferred miRNA

index to just those genes which are effectively expressed. Equation 2

can be easily modified for such purpose by setting ti ¼ 0 if gene i is

not expressed. This alteration in the process can be done trivially

using our mdgsa library (see Supplementary Materials).

2.2 Gene set analysis of the transferred index
In the previous section, we described how differential expression in-

formation measured at the miRNA level can be meaningfully ‘trans-

ferred’ to the gene level by computing our gene inhibition index.

This transferred index implies ranking the genes in such a way

that gene regulation via miRNA action is easily interpretable. This

gene ranking is, of course, informative on its own but it also has the

advantage of being straight forward to interpret in terms of gene sets

such as those described by the GO (Ashburner et al., 2000), KEGG

(Kanehisa and Goto, 2000) or Reactome (Joshi-Tope et al., 2005)

databases, if the appropriate gene set analysis method is applied.

Logistic regression models have been previously successfully used

for gene set analysis based on a ranking statistic. (Sartor et al., 2009)

described how this model can be used to functionally interpret differ-

ential gene-expression studies, and (Montaner et al., 2009) introduced

its use in a gene-importance weighting schema. Later, (Montaner and

Dopazo, 2010) developed them in the context of multiple genomic di-

mensions, and analyzed genomic characteristics other than the classic

gene expression. More recently, (Mi et al., 2012) adapted them to

cope with gene-length biases in RNA-Seq studies.

Given the ranking statistics for the genes, t, for each functional

class being studied, F, the logistic regression approach models the

dependence between gene membership to the class F and the t value

assigned to the gene as follows:

log
Pðgi 2 FÞ
Pðgi 62 FÞ ¼ jþ a ti (3)

When the estimated slope parameter a is significantly positive we

declare the high values of the ranking t as enriched in the given func-

tion. If the a estimate is negative we say that the enrichment occurs

in the lower values of the ranking t.

When interpreting our transferred index, a positive t ranking

value is indicative of a certain degree of gene inhibition in the cases

with respect to the controls. Hence, a positive a estimate in equation

3 indicates that genes inhibited in cases are enriched in function F.

Conversely, a negative a value corresponds to an enrichment of the

function in the genes which are more inhibited in controls than in

cases. An a estimate which is not significantly different from zero in-

dicates that there is no pattern of gene set enrichment related to the

ranking. Figure 2 shows a summary of this interpretation.

Equation 2 will result in ti ¼ 0 for genes not targeted by any

miRNA, and these zeros have no major effect in Equation 3. Thus,

effectively, our gene set analysis is bound to genes which are tar-

geted by at least one miRNA. In ORA approaches, the use of only

targeted genes has been reported as beneficial compared to other

approaches which use all annotated genes as a background for test-

ing (Bleazard et al., 2015; Godard and van Eyll, 2015).

In our study we used GO (Ashburner et al., 2000) terms to define

our gene sets. Gene annotation was downloaded from the Ensembl

web page http://www.ensembl.org. We analyzed the Biological

Process, Cellular Component and Molecular Function ontologies to

obtain an a estimate and its corresponding P-value for each GO

term examined. We corrected the P-values for multiple testing in

order to control the false discovery rate using the method from

(Benjamini and Yekutieli, 2001).

A diagram of the analysis pipeline is shown in Figure 3. Here, we

present the results for the neurofilament cytoskeleton GO term in

the paired breast invasive carcinoma (BRCA) dataset study as a

worked example for our proposed algorithm.

3 Results and discussion

3.1 MicroRNA level
Differential expression analysis was carried out for each cancer type

using edgeR followed by P-value correction to control the false dis-

covery rate (Benjamini and Hochberg, 1995). Table 2 shows the

number of up and down-regulated miRNAs in each of the cancer

types for the paired and unpaired analyses. It is worth noting the

large number of differentially expressed miRNAs this analysis pro-

duces, even after multiple testing correction of the P-values. This is

due to the big differences that exist between tumor and normal sam-

ples, but also highlights the large number of miRNAs that regulate

the genes expressed in one single tissue. As a consequence, interpret-

ing the statistical results to draw biologically meaningful conclu-

sions may be a daunting endeavor.

Fig. 2. Interpretation of the logistic regression model slope parameter in

terms of genes and gene sets

4 F.Garcia-Garcia et al.
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The difficulties in interpreting which of the biological functions

are deregulated by miRNAs in cancer become more evident if we ex-

plore genes which are the targets of these differentially expressed

miRNAs. Table 3 shows the number of genes targeted by the up and

down-regulated miRNAs in each cancer type. Some saturation ef-

fects may be caused by the large number of differentially expressed

miRNAs and also, by the even larger number of known target genes

for each miRNA. On average, 8000 genes are targeted by up or

down-regulated miRNAs, and moreover, the number of genes which

are common targets of the miRNAs is very high, at around 6000

(see Table 3). In some extreme cases, more theoretical than prac-

tical, most genes in the genome could be simultaneously targeted by

up and down regulated miRNAs, but unlike previous ORA

approaches, our methodology is still meaningful in such cases.

Table 4 shows the number of GO terms associated with genes

which where up and down regulated by miRNAs. As we can see, for

most cancer types, all the GO terms included in the study were rep-

resented by these genes. Obviously, in this scenario, over representa-

tion analysis methodologies are meaningless for functional

interpretation of the results. This situation is generally handled by

‘ad hoc’ methods such as increasing the cut-off P-value so that fewer

miRNAs are called as being differentially expressed and conse-

quently smaller groups of genes need to be interpreted. But the op-

posite pattern is also likely to arise in genomic studies; in the cancer
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Fig. 3. Example diagram of the analysis steps for the neurofilament cytoskeleton GO term (GO:0060053). Plot (A) represents the distribution of the ranking index

computed as described in Equation 1. The white box shows the distribution for all miRNAs in the study. In our case, positive values belong to those miRNAs

more expressed in tumors while the negative relate to miRNAs more expressed in controls. Each of the colored boxes represents the same index, but just for the

subset of miRNAs targeting one gene in the GO. Plot (B) represents the gene transferred index introduced in Equation 2. For each of the genes in the GO term all

miRNA level indexes are added up into a unique value. Each of the dots in plot B represents the gene level transferred index computed from the microRNAs rep-

resented in the boxplot underneath (plot A). Plot (C) displays the distribution of the transferred index for the whole genome (left box) and for the genes within the

neurofilament cytoskeleton GO term (right box and dots). Here, we can appreciate how the overall distribution of the genes in the GO term is higher that the basal

distribution of all genes. The logistic regression model spots this pattern and reports the GO term as enriched in tumor samples, meaning that the neurofilament

cytoskeleton cellular component is more intercepted by miRNA action in cases than in controls

Table 2. Number of up, down and not differentially regulated

miRNAS in each cancer type

Unpaired Paired

ID Down noDif Up Down noDif Up

BLCA 128 337 353 127 343 219

BRCA 200 244 396 202 215 269

CESC 92 621 73 29 537 65

COAD 174 291 262

ESCA 98 443 152 62 464 133

HNSC 204 285 360 164 305 222

KICH 166 297 199 217 252 169

KIRC 169 191 323 213 180 215

KIRP 221 262 295 223 242 237

LIHC 120 278 407 200 283 213

LUAD 152 292 405 130 264 259

LUSC 169 215 462 180 313 244

PAAD 23 607 11 8 606 14

PCPG 70 608 43 40 507 55

PRAD 76 429 104 38 513 31

READ 136 307 204

SKCM 46 680 6

STAD 152 308 356 138 307 206

THCA 218 351 257 226 347 145

UCEC 243 284 347 211 272 229

Gene set analysis for microRNA data 5
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case, a large number of miRNAs are expected to be differentially ex-

pressed, but we can easily imagine an experiment resulting in very

few or even no differentially expressed miRNAs due, for instance, to

sample size restrictions. In such cases ORA methodologies are not

applicable but gene set analysis style methods, like the one presented

here, might allow researchers to extract some meaningful conclu-

sions from the data.

3.2 Gene level
After miRNA differential expression analysis, Equation 1 was used

to summarize the P-values and sign statistics into a single ranking

statistic. Then, Equation 2 was applied to translate this miRNA dif-

ferential expression evidence into a gene differential inhibition scale.

For each gene, this transferred index condenses the information

about the miRNAs which target it, preserving two characteristics

suitable for the functional interpretation of the experiment: it ac-

counts for the multiple miRNA cancellation effect and it incorpor-

ates the additive effect of several small inhibitory events.

For example the GPR162 gene is targeted by two miRNAs: hsa-

miR-22-3p and hsa-miR-214-3p. In paired analysis of kidney chro-

mophobe (KIRCH) carcinoma, overexpression of hsa-miR-22-3p

was reported in tumor samples (with a P-value of 5:6� 10�30) while

hsa-miR-214-3p was underexpressed (with a confidence level of

1:8� 10�29). Over expression indexes derived using Equation 1

where 67.34 for hsa-miR-22-3p and -66.61 for hsa-miR-214-3p,

indicating that there is evidence for very similar differential expres-

sion of these two miRNAs, but in opposite ‘directions’. Hence, the

gene GPR162 must be inhibited in cases by miRNA hsa-miR-22-3p

with the same strength that it is inhibited in controls by miRNA hsa-

miR-214-3p. Therefore, our interpretation is that, both inhibition

effects cancel each other out and so, gene GPR162 is considered to

be irrelevant to the cancer process in terms of miRNA action. This

cancellation is reflected in the gene transferred index computed with

Equation 2 which yields a negligible differential inhibition score of

0.73 for this gene. Moreover, when using the logistic regression

model indicated in Equation 3 to perform a gene set analysis of the

gene transferred index, gene GPR162 will not support the enrich-

ment of any of the functions in which it is involved.

The cumulative effect of several weaker miRNA differential-

expression events can also be appreciated, for instance, in the results

produced for the cancer growth regulator gene GREB1. This gene is

targeted by 16 miRNAs none of which has an absolute differential

inhibition score higher than 10 in the analysis of the esophageal car-

cinoma (ESCA) dataset. Nevertheless, adding up all 16 values, we

computed a differential inhibition score of�53.65 for the gene,

indicating strong inhibition in normal samples compared to tumors.

We concluded that GREB1 is usually regulated in normal tissues by

the combined action of many miRNAs, and that this regulation is

lost in ESCA tumors, which therefore may affect cancer growth.

Regarding the gene set analysis, GREB1 will support the GO terms

to which it belongs as being inhibited by miRNA action in controls

or, equivalently, as deregulated in cases.

3.3 Gene set level
Once the miRNA differential-expression evidence is transferred to

the genes, the differential inhibition ranking index can be easily ana-

lyzed in terms of gene sets using a logistic regression approach

(Montaner and Dopazo, 2010; Montaner et al., 2009; Sartor et al.,

2009).

Table 5 shows the number GO terms enriched in positive and

negative transferred index values. In our analysis, the positive trans-

ferred index values belong to genes whose targeting miRNAs are

overexpressed in cancer. These genes are generally more inhibited in

tumor samples due to the effect of miRNAs. Therefore, GO terms

enriched in the positive transferred index gene values represent

Table 4. Number of GO terms associated with the genes targeted

by the up and down regulated miRNAs

Unpaired Paired

ID Down Common Up Down Common Up

BLCA 5169 5169 5169 5169 5168 5168

BRCA 5169 5169 5169 5169 5169 5169

CESC 5169 5168 5168 5144 5138 5160

COAD 5168 5168 5169

ESCA 5169 5168 5168 5169 5167 5167

HNSC 5169 5169 5169 5169 5169 5169

KICH 5169 5169 5169 5169 5169 5169

KIRC 5169 5169 5169 5169 5169 5169

KIRP 5169 5169 5169 5169 5169 5169

LIHC 5169 5169 5169 5169 5169 5169

LUAD 5169 5169 5169 5169 5169 5169

LUSC 5169 5169 5169 5169 5169 5169

PAAD 5129 4578 4590 4870 4681 4915

PCPG 5166 5161 5164 5150 5146 5165

PRAD 5169 5169 5169 5159 4981 4990

READ 5168 5168 5169

SKCM 5169 4385 4385

STAD 5169 5169 5169 5169 5169 5169

THCA 5169 5169 5169 5169 5169 5169

UCEC 5169 5169 5169 5169 5169 5169

Most GO terms are targeted in cases and controls at the same time as it can

be seen in the Common column. The total number of GO terms annotated for

the targeted genes is 5169.

Table 3. Number of genes targeted by the up and down regulated

miRNAS

Unpaired Paired

ID Down Common Up Down Common Up

BLCA 8345 6763 8599 8087 5955 7528

BRCA 8968 7700 9465 9305 7724 9001

CESC 7834 5201 6525 4877 3178 5431

COAD 6981 6418 9998

ESCA 7992 5646 6959 8233 5207 6212

HNSC 9090 7496 8976 9065 7006 8013

KICH 8998 7044 8252 9594 7125 7902

KIRC 8838 7351 9056 9575 7543 8681

KIRP 9169 7388 8629 9311 7025 8267

LIHC 7466 6848 9560 8896 6851 7720

LUAD 8255 7354 9898 8150 6843 8848

LUSC 8535 7265 9447 8844 6710 8166

PAAD 3759 616 1169 1529 442 1748

PCPG 6303 4033 5295 4102 3110 5652

PRAD 7422 5932 8039 4997 1600 2374

READ 6938 6225 9672

SKCM 5983 631 857

STAD 8921 6761 8041 8947 6731 7855

THCA 8763 7244 8702 9064 7065 8056

UCEC 9182 7171 8436 9338 7069 8201

The Common column shows the number of genes which are targets of

both, the up and down regulated miRNAs. The total number of genes which

are targets of at least one miRNA is 12084.
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biological functions which are globally more inhibited, or inter-

cepted, by the miRNA effect in cases than in controls. Similarly, GO

terms enriched in negative transferred index gene values represent

those which have higher interception rates in control samples than

in tumor samples. The biological interpretation of this second group

of functions is that ordinarily they are controlled by miRNA action

in normal tissue and that this coordination is lost in affected tissue,

causing deregulation of the function in a cancer state. Hence, in this

paper we refer to the GO terms enriched in positive transferred

index values as inhibited or intercepted in cancer cells, and we term

gene sets enriched in negative transferred index values deregulated

in cancer states. Figure 2 outlines and summarizes the key param-

eters and steps in our methodology.

Overall, the GO inhibition or deregulation patterns found in the

paired and unpaired analyses are strongly positively correlated (see

Supplementary Materials), reflecting the consistency of our ap-

proach. Despite this, the number of GO terms enriched in the paired

and unpaired analyses differ, which may reflect inter-individual vari-

ability in the role that miRNAs play in cancer. No association pat-

tern between GO size (number of genes in the block) and

significance levels was found (see Supplementary Materials), indicat-

ing the method’s lack of bias in this respect.

Not many enriched GO terms are shared across cancer types (see

Supplementary Materials). This is expected due to the great number

of differences in the tissues, both normal and tumoral, collected in

the different experiments held in The Cancer Genome Atlas. But

may also reflect the specific roles miRNAs play in cancer develop-

ment. Most of the enriched terms shared across different cancer

types are related to cell development, widely known to be related to

cancer evolution. On the other hand, the majority of GO terms

which are individually enriched in the different specific cancer types

are related to cell development, adhesion, signaling and prolifer-

ation; all of them major processes associated with cancer.

For instance, in our paired analysis, the endoplasmic reticulum

lumen cellular component (GO:0005788) is deregulated in BLCA,

CESC and UCEC, all closely related urogenital carcinomas. Full

gene set profiling of the paired an unpaired datasets for 5169 GO

terms can be found in our Supplementary Materials. It includes com-

parisons between paired and unpaired subsets and a clustering ana-

lysis of the different cancer types, based on GSA results.

In order to estimate type 1 errors, all the analyses where repeated

after random permutation of the gene column in the miRNA targets

database. This re-sampling procedure preserves the number of genes

each miRNA targets and the GO annotations, but removes all biolo-

gical associations within, and between miRNAs. In these permuta-

tion experiments the proportion of significant GO terms remained

well below the expected 5% (see Supplementary Materials).

Following the (Godard and van Eyll, 2015) paradigm, logistic re-

gression analysis was also carried out directly at the miRNA level.

This can trivially be done using the mdgsa library after the annota-

tion is extrapolated from genes to miRNAs. Functional results at the

miRNA and gene level showed a significant positive correlation (see

Supplementary Materials).

In order to illustrate how the functional profiling can be re-

stricted to just the expressed genes if such information is available,

we downloaded gene expression measurements for the KICH dataset

and repeated the analysis modifying Equation 2 as indicated in the

methods section. As expected, a significantly positive but not too

strong correlation was found between the results with and without

accounting for the expressed genes. Details of the analysis and re-

sults are available in the Supplementary Materials.

4 Conclusions

We have introduced a novel approach to the functional interpret-

ation of miRNA studies which is primarily designed to unravel the

effects of differential miRNA expression on groups of genes or

pathways.

Our proposal relies on the gene set analysis paradigm which ex-

tends currently used over representation methodologies. It constitutes

a general framework applicable in most genomic scenarios, even

when no (or too many) miRNAs are differentially expressed, hence,

this algorithm eradicates the arbitrariness of current ‘ad hoc’ proced-

ures. But more importantly, our algorithm can encompass biologically

relevant events which are neglected by others, representing a step for-

ward in miRNA gene-regulation modeling. First, our approach ac-

counts for cancellation effects that arise when a gene is intercepted by

different sets of miRNAs within each biological condition. Second, it

is able to incorporate the additive effect caused when several weak

miRNA inhibitors exert their influence on the same gene.

These major advantages are possible thanks to a key innovative

idea introduced in this paper: that differential miRNA expression

can be meaningfully transferred to the gene level as a differential in-

hibition score.

If miRNA-to-gene transfer comprises cancellation and summa-

tion effects, the gene set methodology performs the same role at the

functional level. A GO term is considered not to be enriched, or can-

celed, if half of its genes are inhibited in cases and the other half in

controls. But also the additive effect consideration reappears at

pathway level: many weakly deregulated, or inhibited, genes which

would be inconsequential in isolation become relevant if they are

systematically annotated under the same biological function.

Table 5. Number significant GO terms in the functional profiling

analysis for the paired and unpaired comparisons

Unpaired Paired

ID Derg. noDif Inh. Derg. noDif Inh.

BLCA 2 5167 0 2 5167 0

BRCA 3 5166 0 0 5167 2

CESC 0 5169 0 1 5167 1

COAD 18 4930 221

ESCA 2 5167 0 1 5168 0

HNSC 53 5116 0 0 5169 0

KICH 1 5167 1 30 5138 1

KIRC 0 5159 10 5 5163 1

KIRP 4 5165 0 13 5155 1

LIHC 7 5080 82 0 5169 0

LUAD 0 5169 0 0 5169 0

LUSC 0 5169 0 0 5169 0

PAAD 3 5165 1 0 5169 0

PCPG 0 5169 0 0 5166 3

PRAD 0 5168 1 1 5168 0

READ 0 5157 12

SKCM 121 5043 5

STAD 5 5164 0 0 5169 0

THCA 2 5167 0 2 5167 0

UCEC 89 5080 0 9 5160 0

Columns Inh. indicates the number of terms with a positive a coefficient in

the logistic regression analysis. Those are the terms inhibited or intercepted in

cases. Columns Derg. indicates the number of terms with a negative a value.

Those are the terms inhibited in controls or deregulated in cases. Columns

noDif indicate the number of GOs with a not significant slope coefficient.
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Besides the analysis presented here, the logistic regression meth-

odology developed in our previous work allows the algorithm to be

extended in many convenient ways. For example, the relative im-

portance of miRNAs, genes, or the miRNA-gene relationship can be

easily weighted for at the transference step or when fitting the logis-

tic model. Thus, confidence about the miRNA targets, number of

target sites in genes, absolute gene expression levels, or even natural

miRNA functional loss (Carbonell et al., 2012), can be directly ac-

counted for using our model. Furthermore, additional genomic in-

formation can be incorporated using our multidimensional

framework: for instance, joint GSA analysis of miRNA regulation

and gene expression is straightforward once the transference prob-

lem is solved using the methodology we explain in this paper. Also

the flexibility of our approach and software makes its use independ-

ent of the differential-expression algorithm used at the miRNA level.

Different statistical tests or even fold changes can substitute the

edgeR method used here; similarly, any miRNA target databases

can be used.

We have illustrated our novel methodology using an extensive

collection of cancer datasets, but here we just present some deregu-

lated genes or functions as a proof of concept. Complete results are

available in the supplementary data. We hope that the ideas intro-

duced here can easily be extrapolated to other gene regulatory proc-

esses such as those involving transcription factors for instance.

Finally, it is crucial to highlight the importance of data normal-

ization for the correct functional interpretation of NGS studies.

Inadequate data preprocessing may affect P-values for differential

miRNA expression and even the sign of test statistics, sequentially

affecting Equations 1–3 and therefore changing the results of our

methodology. Thus, thorough data preparation and exploration

should always be conducted before using our algorithm.
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