
BioMed CentralBMC Bioinformatics

ss
Open AcceProceedings
Functional assessment of time course microarray data
María José Nueda1, Patricia Sebastián2, Sonia Tarazona3, Francisco García-
García2, Joaquín Dopazo2,4,5, Alberto Ferrer3 and Ana Conesa*2

Address: 1Department of Statistics and Operation Research, University of Alicante, Ctra. San Vicente del Raspeig, S/N 03690 Alicante, Spain, 
2Bioinformatics and Genomics Department, Centro de Investigaciones Príncipe Felipe, Avda. Autopista Saler 16, 46012 Valencia, Spain, 
3Department of Applied Statistics and Operations Research, Universidad Politécnica of Valencia, Cno. vera s/n, Edifico 7A, 46022 Valencia, Spain, 
4Functional Genomics Node (INB), Centro de Investigación Príncipe Felipe (CIPF), Valencia, Spain and 5CIBER de Enfermedades Raras 
(CIBERER), ISCIII, Spain

Email: María José Nueda - mj.nueda@ua.es; Patricia Sebastián - psebastian@cipf.es; Sonia Tarazona - starazona@cipf.es; Francisco García-
García - fgarcia@cipf.es; Joaquín Dopazo - jdopazo@cipf.es; Alberto Ferrer - aferrer@eio.upv.es; Ana Conesa* - aconesa@cipf.es

* Corresponding author    

Abstract
Motivation: Time-course microarray experiments study the progress of gene expression along
time across one or several experimental conditions. Most developed analysis methods focus on the
clustering or the differential expression analysis of genes and do not integrate functional
information. The assessment of the functional aspects of time-course transcriptomics data requires
the use of approaches that exploit the activation dynamics of the functional categories to where
genes are annotated.

Methods: We present three novel methodologies for the functional assessment of time-course
microarray data. i) maSigFun derives from the maSigPro method, a regression-based strategy to
model time-dependent expression patterns and identify genes with differences across series.
maSigFun fits a regression model for groups of genes labeled by a functional class and selects those
categories which have a significant model. ii) PCA-maSigFun fits a PCA model of each functional
class-defined expression matrix to extract orthogonal patterns of expression change, which are
then assessed for their fit to a time-dependent regression model. iii) ASCA-functional uses the
ASCA model to rank genes according to their correlation to principal time expression patterns and
assess functional enrichment on a GSA fashion. We used simulated and experimental datasets to
study these novel approaches. Results were compared to alternative methodologies.

Results: Synthetic and experimental data showed that the different methods are able to capture
different aspects of the relationship between genes, functions and co-expression that are
biologically meaningful. The methods should not be considered as competitive but they provide
different insights into the molecular and functional dynamic events taking place within the biological
system under study.
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Background
Microarray time-course experiments have gained popular-
ity in recent years to address the study of biological phe-
nomena where the dynamics of gene expression is of
relevance. In contrast to classical control-case studies,
where basically two conditions are compared, time series
experiments encompass investigations of diverse nature
and complexity. Studies may relate to developmental
processes with a large number of sampling points (e.g.
[1]), or to stimuli-response experiments where transcrip-
tome changes are assessed in a short time span and may
include multiple treatments (e.g. [2]), or may try to cap-
ture cyclic variations of gene expression (e.g. [3]). Moreo-
ver, samples might be destroyed by the sampling process
or be taken from the same individuals along the time
component. This results in microarray time-course data
being classified as either short (up to 5–6 time points) or
long (from 6–7 time points) series, single (one treatment
or tissue) or multiple (more than one treatment or tissue)
series, and longitudinal vs. independent depending if sam-
ples are blocked by an individual effect or are not related.
A significant number of statistical methods have been
published as microarray time-course experiments that
have been expanded to address the analysis of this type of
data. Many of the developed algorithms consider the clus-
tering of serial data. Proposed strategies include the use of
Gaussian mixed models [4], Bayesian models [5], Hidden
Markov Models [6], B-splines [7,8], and Fourier Series [9]
to model and cluster long series data, while more ad-hoc
algorithms have been developed for short series [10,11].
Another important block of methodologies are those that
pursue the identification of time-associated differentially
expressed genes (d.e.g.'s). In this category we find back the
B-spline approach [7,12] a multivariate adaptation of the
empirical Bayes test [13] to specifically treat longitudinal
data [14] and some ANOVA and regression-based models
for short series [15-18]. Finally, Conesa and co-workers
presented two methods well suited to independent, mul-
tiple series data based either on step-wise regression or
singular component analysis [19,20].

In all of these approaches statistical analysis focused on
modeling gene expression and identifying those genes
with a relevant variation pattern. This orientation, though
valid and useful, solves only one (frequently the first)
requirement to understand transcriptomics changes from
any kind of microarray experiment. In most cases, the
analysis proceeds through the identification of cellular
processes and functions which are represented by the gene
selection, i.e. genes are identified by their functional role
and the question is then which functional modifications
can be derived from the observed gene regulation. The
incorporation of functional information into data analy-
sis is normally obtained by the use of functional annota-
tion databases that define and assign function labels to

known genes. The most widely used functional annota-
tion scheme is the Gene Ontology (GO) [21], which char-
acterizes genes for their molecular functions (MF), cellular
locations (CC) and involved biological processes (BP),
but others such as the KEGG metabolic pathways [22],
transcription factor targets [23] or Interpro functional
motifs [24] can also be employed for specific biological
questions. This functional assessment aspect is tradition-
ally handled in microarray data analysis via the so-called
enrichment analysis: the list of significant genes is interro-
gated for over (and/or under) abundance, as compared to
the entire genome represented in the array of the consid-
ered functional categories. In time-course microarray
data, this strategy could be similarly followed for the set
of time-dependent differentially expressed genes (for
example, as provided in the time course module of the
GEPAS suite, [25]), or for the distinct clusters into which
this gene selection can be divided (available in STEM
package, [26]). As a matter of fact, gene enrichment anal-
ysis is very often used to validate the results of a gene
selection or a clustering strategy [27,28].

This strategy for the functional evaluation of differential
gene expression has a number of limitations [29]. Firstly,
the functional enrichment analysis is greatly dependent
on the definition of an arbitrary threshold for significance
and gene selection, and eventually on the clustering strat-
egy of choice. The threshold aspect was overcome in two
class experiments through the Gene Set Analysis
approaches (GSA), which evaluate functional enrichment
over a rank rather than a selection of genes [30-33]. To our
knowledge, no equivalent approach is yet available for
time series data. Secondly, functional assessment is done
after gene selection and therefore does not allow for a
direct evaluation of expression changes as gene functions,
which might obscure relationships between functional
categories and ignore significant sub-patterns of varia-
tions within the functional class.

In this paper we have set out to address the problem of the
functional assessment of gene expression in time series
data in an alternative manner. We have developed and
tested three distinct strategies which respond differently to
the various concerns mentioned above. The proposed
methods derive from previous methodologies developed
in our group for the analysis of short, multiple series data
which follow a gene-centric orientation: the maSigPro
[19], a two-step regression approach, and the ASCA-genes
[20], a multivariate method that combines ANOVA
decomposition with Singular Component Analysis. In
this study, we first assess the fully correlated nature of the
functional category in a modification of the maSigPro
methodology to directly model the combined expression
of genes belonging to the same functional class (maSig-
Fun). In a second approach, we consider the possibility of
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different patterns of coordinative time-dependent gene
expression variation within the functional class and the
selection of those with a significant change (PCA-maSig-
Fun). Finally, we develop an adaptation of the GSA strat-
egy to time series by identifying the main variation
patterns in the dataset and rank genes according to their
correlation to such patterns (ASCA-functional).

We have used both synthetic and experimental datasets to
assess the different methods. Simulated data provides a
means of understanding the working of the methodolo-
gies while experimental data offers insights into the bio-
logical relevance of the strategies. Furthermore, we
provide a comparison with other available methods. Algo-
rithms were implemented in the R language and are avail-
able at http://bioinfo.cipf.es/downloads.

Materials and methods
The proposed methods
maSigFun
This methodology derives from maSigPro, a regression-
based approach for the analysis of multiple series time-
course microarray data [19]. The maSigPro method fol-
lows a two-stage regression strategy to model gene expres-
sion and select differential expressed genes: the first step
uses a generic polynomial model to spot responsive genes,
while the second applies step-wise regression to reveal the
patterns of significant differential time profiles.

The adaptation of maSigPro to consider functional infor-
mation -maSigFun- is quite straightforward: the regres-
sion model is not fitted gene-wise as in maSigPro, but to
the data matrix composed the expression values of all
genes belonging to the functional class, thus one regres-
sion model is fitted to each functional category. In this
approach individual genes are considered as different
observations of the expression profile of the class. As
genes belonging to the same class may show different
basal expression levels and this may negatively influence
the estimation of model parameters, expression data is
standardized gene-wise to better capture the correlation
structure within the functional group. After this transfor-
mation, statistical analysis proceeds as in regular maSig-
Pro (Figure 1a). The expected result is that significant
functional classes are those whose genes change their
expression along time in the same manner, i.e. a high level
of co-expression is present within the functional class.

PCA-maSigFun
In this strategy we consider that a functional block might
display not only one but several patterns of coordinative
gene expression. These distinct patterns are extracted by
following a strategy similar to that proposed by [34] to
directly link gene function to the phenotype. Basically, the
strategy applies Principal Component Analysis (PCA) to

the gene expression matrices composed of all genes
belonging to the same functional class. PCA modeling
will dissect orthogonal, time-dependent, transcriptional
patterns contained in the class and a number of those will
be selected. The selection criterion implemented in the
PCA-maSigFun method follows the rationale of retaining
patterns that represent non-random variation. Consider-
ing the general assumption held in transcriptomics analy-
sis, that of global invariability in gene expression, a good
estimate of noise-level variation would be the mean gene
variance across the complete dataset. Therefore, for each
functional-class associated PCA, selected components are
those having a normalized explained variance above this
mean gene variance value. The scores vector of each com-
ponent depicts an expression pattern that corresponds to
a correlated gene subset of the functional class and can be
taken as transformed expression values for that subset. All
thus-obtained scores vectors are collected into a matrix of
function-labeled "synthetic genes" which is then sub-
jected to regular maSigPro for regression-based statistical
analysis. Selected features will therefore correspond to
defined function patterns that show a significant associa-
tion with time (Figure 1b). Once significant functional
features are obtained, the question is how individual
genes relate to these significant patterns. This information
can be obtained by analysing the gene loadings in each
PCA model. Genes with a high absolute loading value in
a given selected component will have an important con-
tribution to the associated profile and therefore can be
considered as members of the gene subset that defined
that correlated pattern of the class. Genes with a low abso-
lute loading value will not correspond to this subset. In
the current PCA-maSigFun implementation, a value for
loading cutoff is derived by bootstrapping over the whole
dataset to create a null loadings distribution across all
functional classes and defining an arbitrary threshold
(typically the 95% percentile) to declare a gene as signifi-
cantly contributing.

ASCA-functional
The ASCA approach was developed by [35] to analyze
high dimensional data obtained from replicated, multi-
factorial designed experiments. [20] adapted this method-
ology to transcriptomics analysis by incorporating a strat-
egy for gene selection (ASCA-genes). Basically, ASCA
couples ANalysis Of VAriance (ANOVA) decomposition
to Singular Component Analysis (SCA) to study correla-
tion patterns associated with the experimental factors of
interest. In the case of transcriptomics time series data,
ASCA extracts gene expression submatrices where only sig-
nals associated with time and/or treatment are retained.
SCA applied to these submatrices identifies patterns of co-
expression across genes where noise and possible co-vari-
ate effects have been removed. ASCA analysis therefore
provides a PCA submodel for each experimental factor-
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time, treatment and the interaction – that encompasses all
genes in the dataset and collects most of the variability
associated with each experimental factor. In ASCA-func-
tional these models are used to create ranks of genes that
can be subjected to GSA analysis. In this sense, the third
proposed approach can be considered as an adaptation of

GSA methods to situations where not only two, but more
experimental conditions are involved, as is the case of
(multiple series) time course data. In two-class data, genes
are ranked according to a measure of differential expres-
sion such as fold change, a t-statistic or a similar statistic.
Enrichment analysis is performed along this rank by

Schematic representation of the proposed methodsFigure 1
Schematic representation of the proposed methods. a) maSigFun fits a regression model for each gene expression sub-
matrix defined by the genes annotated to a given functional class (FC.1 to 4 in scheme). Significant classes are obtained by the 
maSigPro method (FC.3). b) PCA-maSigFun obtains a PCA model for the gene expression submatrix defined as in maSigFun and 
extracts a number of components that collect non-random variation. Generally 0 (FC.1) to 2 (FC.2) components are extracted 
for each functional class. A regression model is then fitted to the scores vector of extracted components to select function-
defined patterns with a significant association to time (FC.2 and FC.3). c) ASCA-functional applies ASCA-genes to identify prin-
cipal patterns of variation associated with time and time × treatment experimental factors (PC1 to 3 in scheme). Genes are 
ranked by loading value in each PC, and GSA analysis is applied to each loading value-ordered gene list to identify a functionally 
related block of genes associated with the principal patterns of variation (FC.2 and FC.3).

 

a) maSigFun

b) PCA-maSigFun

Categories Genename Array1 Array2 Array3 …
Gene1 0.1 0.5 -1.3 …
Gene7 3.1 2.2. 3.4 …
Gene2 1.3 1.1 1.8 …
Gene3 0.1 -0.6 -2.1 …
Gene6 -1.1 -2.1 -2.8 …
Gene8 0.1 0.5 -1.3 …
Gene9 3.1 0.6 0.1 …
Gene1 0.1 0.5 -1.3 …
Gene4 0.4 0.4 -0.2 …

Gene12 1.9 -2.3 0.9 …
Gene5 0.8 -0.3 -1.1 …
Gene6 1.3 1.1 1.8 …

Gene10 -1.1 -2.1 -2.8 …
Gene11 3.2 2.8 2.6 …

… … … … … …
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F.C.3

F.C.2
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regression

regression

regression

FC.3

Categories Genename Array1 Array2 Array3 …
Gene1 0.1 0.5 -1.3 …
Gene7 3.1 2.2. 3.4 …
Gene2 1.3 1.1 1.8 …
Gene3 0.1 -0.6 -2.1 …
Gene6 -1.1 -2.1 -2.8 …
Gene8 0.1 0.5 -1.3 …
Gene9 3.1 0.6 0.1 …
Gene1 0.1 0.5 -1.3 …
Gene4 0.4 0.4 -0.2 …

Gene12 1.9 -2.3 0.9 …
Gene5 0.8 -0.3 -1.1 …
Gene6 1.3 1.1 1.8 …

Gene10 -1.1 -2.1 -2.8 …
Gene11 3.2 2.8 2.6 …

… … … … … …

F.C.4

F.C.3

F.C.2

F.C.1

PCA

PCA

PCA

PCA

regression

regression

regression
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c) ASCA-Functional

Genename Array1 Array2 Array3 …
Gene1 0.1 0.5 -1.3 …
Gene2 1.3 1.1 1.8 …
Gene3 3.1 0.6 0.1 …
Gene4 2.1 2.3 2.1 …
Gene5 0.8 -0.3 -1.1 …
Gene6 0.1 -0.6 -2.1 …
Gene7 3.1 2.2. 3.4 …
Gene8 -1.1 -2.1 -2.8 …
Gene9 0.9 0.7 0.3 …

Gene10 0.4 0.4 -0.2 …
Gene11 3.2 2.8 2.6 …
Gene12 1.9 -2.3 0.9 …
Gene13 0.9 0.7 0.4 …

… … … … …

Genename LoadingPC1 LoadingPC2 LoadingPC3
Gene1 0.9 -0.1 0.4

Gene12 0.7 0.2 0.9
Gene4 0.7 0.0 0.1
Gene7 0.2 0.3 -0.6
Gene5 0.2 1.0 -2.3

Gene10 0.1 0.0 0.6
Gene9 0.1 1.5 0.2

… … … …
Gene11 -0.1 1.1 0.0
Gene13 -0.3 0.5 -0.2
Gene8 -0.5 0.5 -0.6
Gene3 -0.6 -0.1 0.3
Gene6 -0.7 0.2 0.1
Gene2 -0.9 … …

ASCA GSA

FC.3 FC.2
PC1

PC2

PC3

Genename LoadingPC1
Gene1 0.9

Gene12 0.7
Gene4 0.7
Gene7 0.2
Gene5 0.2

Gene10 0.1
Gene9 0.1

… …
Gene11 -0.1
Gene13 -0.3
Gene8 -0.5
Gene3 -0.6
Gene6 -0.7
Gene2 -0.9

for each loading

-

+
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assessing the differential distribution of each functional
block along the ranked gene list. In the case of ASCA-func-
tional, ASCA-genes is first applied to create PCA submod-
els associated with each experimental factor. Similarly to
the previous method, the genes loadings at each compo-
nent of each submodel are a measure of the similarity of
each particular gene expression profile to the pattern
depicted by the component of the submodel. Genes with
high positive loadings will mostly follow the pattern indi-
cated by the component; genes with high negative load-
ings follow an opposite pattern, while genes with loadings
close to zero do not resemble the behavior represented by
the principal component. Those badly modeled genes are
identified in ASCA-genes by their high SPE [20] and are
assigned a loading value of 0. The gene loadings therefore
offer a way to rank genes according to specific patterns of
variation which correspond to biological phenomena.
This ranking can then be subjected to GSA analysis. In our
particular implementation, ranked lists are analyzed by
the partitioning method FatiScan [30,33] to identify func-
tional categories associated with specific time patterns
(Figure 1c).

Datasets
Synthetic and experimental datasets were used to assess
the proposed methods. Synthetic data was designed to
depict different scenarios of co-expression while the
experimental sets reflect two microarray studies involving
different probe sizes and biological systems.

Synthetic datasets
Two simulation studies were designed to evaluate the
effect of class size and the percentage of co-expressed
genes in the identification of time-course by changing
functional categories. Both studies use the same primary
data structure. The hypothetical experiment contained
two series (Control and Treatment) and three time-points
(0, 1 and 2). Synthetic datasets consisted of a total of
10,000 genes in study A and several sizes in study B, dis-
tributed in 250 classes from which 225 classes contain
only flat genes and 25 classes include at least one differen-
tially expressed gene. Modeled responsive genes follow

one of four possible patterns of expression: 1) Flat profile
for control and continuous induction for treatment, 2)
Flat profile for control and continuous repression for
treatment, 3) Flat profile for control and transitory induc-
tion for treatment and 4) Flat profile for control and tran-
sitory repression for treatment. In all of the 25 classes with
some non-flat genes only one of the four patterns is
present, meaning that all changing genes in the class fol-
low the same profile, have a positive correlation and
could be regarded as "co-expressed". In each individual
simulation, noise was introduced into the datasets by add-
ing to the defined profiles random values taken from a
normal distribution N(0, 0.01).

The first simulated study (A) analyzes how the percentage
of co-expressed genes within the functional class affects
the identification of the category. In this study, functional
classes varied in size (number of genes), taking values
from 5, 10, 30, 55 and 100. Seven different datasets were
created in this study, each of them with a different per-
centage of co-expressed genes (20, 30, 40, 50, 60, 70 and
80%) for all of the 25 non-all-flat classes present in the
dataset (Table 1). For example, dataset A-40 has 10,000
genes distributed in 250 classes of different size from
which 25 classes all have 40% of genes which follow the
same changing profile and 60% of the genes that are flat.
In the remaining 225 classes of dataset A-40, 100% of the
genes are invariant. Fifty simulations were run for each of
the seven proportion levels.

In the second simulated study (B) we evaluated the effect
of the class size. Here, 4 × 3 datasets were created, each of
them having a fixed value for the class size (5, 10, 50 and
100) and a fixed value for the percentage of genes with
change (30, 50, and 70%) (Table 1). For example, dataset
B-50-70 contains 250 classes of size 50 (12500 genes),
from which 25 classes have 35 genes with a defined
changing profile and 15 flat genes, while the remaining
225 classes of dataset B-50-70 all have 50 genes flat.
Again, 50 simulations are run for each size and proportion
levels.

Table 1: Summary parameters used in simulation studies.

Simulated Study A Simulated Study B

Number of categories 250 250
no. categories with d.e.g. 25 25

Scenarios analised 7 (% d.e.g.'s) 12 (% d.e.g.'s (3) × no.genes categories (4))
% d.e.g.'s within category 20,30,40,50,60,70,80 30,50,70

no. genes in each category In each scenario, categories have different number of 
genes, systematicaly taken from 5, 10, 30, 55, 100

In each scenario, all categories have the same number 
of genes. Different cases: 5,10,50,100

Total number of genes 1000 1250, 2500, 12500, 25000 (250 × no. genes in each 
category)

d.e.g.'s: differentially expressed genes
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Experimental datasets
Three experimental datasets, representing different tech-
nological platforms and array sizes, were selected for the
evaluation of the methodologies on real data. The first
dataset corresponds to the toxicogenomics study by [36]
where the transcriptome response in rat liver to increasing
doses of the drug bromobenzene (BB) is studied. In this
study 2–6 rats were sacrificed after 6, 24 or 48 hours of
drug exposure to extract liver mRNA which was then
labeled and hybridized to a custom cDNA using a dye-
swap design with a common reference. The dataset con-
sists of 3 time points, 5 series (HIgh, LOw and MEdium
BB levels, UnTreated and Corn Oil vehicle controls) and
2,665 genes. The second dataset collects the transcrip-
tional response to three different abiotic stressors (Salt,
Cold and Heat) in potato measured on the NSF 10 k
potato array [37]. Also a common reference design is used
in this case. The dataset has 4 series (3 treatments plus one
Control), 3 time points and three replicates per experi-
mental condition. The third experimental dataset is taken
from a microarray platform evaluation study for which
the indole-acetic acid (IAA) hormone treatment in Arabi-
dopsis thaliana is used to assess the performance of the 23
K Affymetrix ATH1 GeneChip [38]. This dataset counts
with three time points (0 h, 1 h and 3 h after treatment)
and two levels of hormone administration, 0.1 uM IAA
and 1.0 uM IAA. There are between 6 and 4 replicates per
experimental condition.

Comparison to other methods
We compared our results on experimental data with two
different methodologies available at the time of research.
The methods were chosen because they have ready-to-use
implementations or were specifically described for the
functional analysis of time series data.

We used the STEM software available at http://
www.cs.cmu.edu/~jernst/stem/. STEM implements the
algorithm described in [39] for clustering short time-series
gene expression data. The method works by assigning
genes to a predefined set of model profiles that capture the
potential distinct patterns that can be expected from the
experiment and assessing the significance of these pat-
terns. STEM is fully integrated with the Gene Ontology
database supporting GO category gene enrichment analy-
ses for sets of genes belonging to the same cluster. Sec-
ondly, we compared our results with the strategy
described in [40] for finding blocks of functionally related
genes in experiments which display an autocorrelation
between successive points. Basically the strategy computes
the difference between each time point and the zero time
for all genes in the experiment to create a matrix of pair-
wise differences. Each column in the matrix is then
ordered by the magnitude of the difference to generate as
many gene ranks as time points. Each ranked list is then

individually subjected to GSA, as implemented in the
FatiScan program [33]http://www.babelomics.org and
functional results are jointly evaluated.

Results
Simulation studies
For either simulation study, fifty datasets of each type
were generated and analyzed with the three proposed
methods. For each observation, the identified categories
were recorded and values of true positives (considering
the 25 non-all-flat classes as "true positives"), values of
false positives (FP), false negatives (FN), sensitivity (pro-
portion of actual positives which were correctly detected)
and specificity (proportion of negatives which were cor-
rectly identified) were computed. In all methods the sig-
nificance threshold was set at 0.05 false discovery rate
(FDR).

maSigFun
In the case of maSigFun, analysis recall statistics were cal-
culated at different values of the R2 parameter since this
was expected to have a great influence on the results. The
R2 or goodness of fit indicates how well the model fits the
data and therefore reflects the coherence within the obser-
vations. Previous studies with maSigPro indicated that a
cut-off value of 0.6 would be appropriate for the selection
of d.e.g.'s in time-course microarray data [19]. In this
study, four levels of R2 , 0, 0.4, 0.6 and 0.8 were evaluated.
Results are presented in Additional file 1.

The in silico analysis revealed that the maSigFun method-
ology is sensitive at identifying functional classes with a
high proportion of changing genes (70%) when a moder-
ate R2 cut-off (0.4) is imposed. At higher R2 sensitivity
drops, while the consequence of releasing the R2 filter (R2
= 0) was that functional classes with a low proportion of
regulated genes (20%–30%) could also be selected (Fig-
ure 2). In all cases, the rate of false positives is under con-
trol and specificity remains high (see Additional file 1).

Regarding class size, simulation study B showed that this
factor is of little relevance when a sufficient level of co-
expression and R2 cut-off value are used, as the sensitivity
of the method is more dependent on the amount of regu-
lated genes in the class (Figure 3, panels b), c) and d)).
However, when functional classes have a lower level of co-
expression and a permissive R2 is used, maSigFun
revealed a dependency on the class size, because the
method is more sensitive for classes with a large number
of members (Figure 3, panel a)). Again, specificity was
high in all cases (see Additional file 1).

Taken together, the simulation analysis showed that
maSigFun is effective at identifying those functional
classes for which a relative high level of gene expression
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coherence is present regardless of the number of genes
annotated to the class.

PCA-maSigFun
The simulation analysis for the PCA-maSigFun resulted in
sensitivity and specificity values close to one in all scenar-
ios and dataset types (see Additional file 1), indicating
that the method basically identifies any functional class
with at least 20% of changing genes, regardless of it size,
and also that the methodology is robust for the occurrence
of false discoveries. This result is not surprising, since the
specific property of the method is the ability of extracting
gene expression sub-patterns within each class and the
positive selection of the functional class occurs by identi-
fying the correlated profile.

ASCA-functional
As only one pattern of variation was modeled in each syn-
thetic functional class, ASCA was applied with only one
component in the submodel, capturing time and treat-
ment effects, denoted as "submodel b+ab" in the ASCA-
genes paper [20]. Genes were ranked according to the
loading value of this single component, leading to one
FatiScan analysis per synthetic dataset. The in silico study
for ASCA-functional also showed interesting results. Sim-
ulation study A revealed a turning point for sensitive
detection at a percentage of changing genes of 60% (Fig-

ure 4). This result is in agreement with the nature of the
GSA strategy since the asymmetric distribution along the
ordered gene list of the genes annotated to a given class is
expected to occur when the percentage of genes associated
with the biological phenomenon captured by the ASCA
component is above half of the class size. On the other
hand, simulation study B indicated that the size of the
class does not affect sensitivity of detection which is
merely dependent on the inner co-expression level of the
class. Full specificity was obtained for all dataset types in
both studies (Additional file 1).

Experimental datasets
The different functional assessment methods were applied
to the analysis of two different experimental datasets.
Since in real datasets the true differentially expressed
genes are not known, recall statistics cannot be calculated.
Therefore results were evaluated in terms of number of
functional classes detected and biological coherence of
the selection. The Gene Ontology was used a functional
classification scheme. The set of GO terms characterizing
each dataset was obtained by fetching GO information
from public databases, completing annotation with the
Blast2GO software [41], constructing the Direct Acyclic
Graphs (DAGs) of each GO branch -BP, MF and CC- and
obtaining all nodes in the graph. This set of terms was
then refined by removing annotation redundant terms. A
GO term was considered annotation redundant if it has
the same set of annotated genes as any of its child terms.

Toxicogenomics dataset
In this study, three increasing doses of the drug bro-
mobenzene were tested for their toxic effects on rat liver.
The original analysis of the data showed that most marked
effects on the transcriptome were provoked at high BB
doses and 24 hours post-administration. Also important
but more moderate were the effects of medium dose and
later time points. The 2,665 probes contained in the rat
chip were annotated to a total of 967 BP, 534 MF, and 243
CC non redundant GO terms (Table 2a).

The three analysis approaches provided semantically
related results but with very different levels of specifica-
tion (Additional file 2).

maSigFun analysis identified 7 BP, 8 MF and 0 CC catego-
ries (Table 2a and Additional file 2) as significant at a FDR
level of 0.05 and R2 of 0.3. More restrictive values for the
R2 parameter failed to give any significant result. Func-
tional categories included heme oxidation, cell-aging, cas-
pase activation via cytochrome c oxygenase, ferric ion binding,
rRNA binding and plasminogen activator activity, induced by
BB administration, and bile acid transporter activity, oxidore-
ductase activity, retinol binding and long-chain-fatty acid-CoA
ligase activity, repressed by high BB (Figure 5). Interest-

Results of simulation study A with the maSigFun methodFigure 2
Results of simulation study A with the maSigFun 
method. Changes in sensitivity with the percentage of co-
expressed genes in the class at four values of the goodness of 
fit R2 of the regression models. Data points correspond to 
the mean value of 50 simulations. Confidence intervals were 
omitted due to their negligible size.
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ingly, selected categories had between 4 and 6 annotated
genes and a mean inner correlation value (computed as
the mean value of all pair-wise Pearson correlations of the
expression profiles of the genes annotated to the class) of
0.6 ± 0.1. This measure of class coherence is close to the
critic value of 70% percentage of co-regulated genes
obtained in the simulation studies for efficient selection
by maSigFun.

Analysis by PCA-maSigFun provided a much richer reper-
toire of functional classes. GO-based PCA transformation
of gene expression data compressed transcriptional infor-
mation into function-associated transcriptome patterns
("synthetic genes", referred here as "GO-components").
In most cases one or two GO-components were obtained
per GO term and only in very generic classes, such as trans-
lation or ribosome, up to 3 patterns of correlated behaviors
were extracted. maSigPro analysis on the matrix of these
new functional variables resulted in the identification of

33 BP 15 MF and 10 CC significant features (Table 2a and
Additional file 2). Interpretation of these results is facili-
tated by plotting the PCA scores of each maSigPro signifi-
cant GO-component along with the PCA loading of the
annotated genes. In this way we can identify the gene
expression patterns captured by the significant GO-com-
ponent (Figure 6a) and locate the most contributing genes
(Figure 6b), i.e. genes that most closely follow the pattern
indicated by the GO-component either with a positive (+,
gene loading greater than 0), or negative correlation (-,
gene loading smaller than 0). Horizontal lines indicate
the threshold for significant contribution of the gene to
the GO-component pattern. The PCA-maSigFun approach
identified 3 different patterns of expression: i) classes that
show a peak of expression on high BB and 24 hours, ii)
classes that also respond at 24 hours at medium BB and
iii) classes that show a early (6 hrs) regulation for both
high and medium BB (Figure 6). The first pattern was
found for different GO terms pointing to processes as fatty

Results of simulation study B with the maSigFun methodFigure 3
Results of simulation study B with the maSigFun method. Changes in sensitivity with the size of the class at three lev-
els of percentage of changing genes (co-expression) in the class. One plot is provided for each level of the goodness of fit R2 of 
the regression models. Data points correspond to the mean value of 50 simulations. Confidence intervals were omitted due to 
their negligible size.
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acid metabolism and oxidation (-), cell adhesion (-), amino
acid metabolism (-), translation (+,-) microtubule organization
(+), endopeptidase inhibitor activity (-) and vesicular fraction
(+). Functions associated with the second pattern include
translation (+), negative regulation of cell proliferation (+),
acute inflammatory response (+,-), xenobiotic metabolic process
(+,-), signal transduction (+,-), biopolymer methylation (-),
maintenance of localization (+), response to toxic compound
(+), iron ion binding (+,-), exopeptidase activity (+), kinase
activity (+), epoxide hydrolase activity (+), ribosome (+,-).
Finally, in the third pattern we found cation homeostasis
(+), nitric oxide mediated signal transduction (+), copper ion
binding (+) and lysosome (+). It is important to mention
that, in most cases, only a subset of each GO term anno-
tated genes showed significant contributions to the GO-
component, indicating the predominant role of these
genes in the determination of the pattern. In a few cases,
corresponding to very general categories such as transla-
tion or ribosome, none of the annotated genes reach the
threshold of significant contribution, but a continuum
signal was observed, which would indicate a small but
coordinated gene activity within the class. Finally, in some
cases, such as xenobiotic compound and acute-phase, genes
were observed that display either a positive or negative
significant contribution to the component, which implies
that coordination is present but with positively and nega-
tively acting elements. For example, in the case of acute-

phase, the alpha-1-glycoprotein, a positive acute phase pro-
tein, was found to have a significant contribution to the
acute-phase GO-component pattern that represented gene
expression activation with high BB at 24 h. Another three
proteins, alpha-1-inhibitor, albumin and tripsin, known as
negative acute-phase proteins [33], had significant but
negative contributions to the GO pattern, which indicates
an opposite pattern of expression (Figure 7). Therefore,
this GO-component collects the induction of positive
acute-phase proteins and the repression of negative acute-
phase genes, suggesting a general activation of this cellular
process.

Finally the ASCA-functional method gave an intermediate
result between the two previous approaches. Analysis by
ASCA indicated three main independent patterns of vari-
ation within the transcriptomics signal. As in the other
approaches, the first component, which collects 46% of
the gene expression variability, represents the pattern of
change (induction or repression) by high BB at 24 hours
(Figure 8). The second component, with 10% associated
explained variance, represents the change of medium BB
at 24 hours. The third component (9% explained vari-
ance) captures the early responses at medium and high
BB. As the first principal component represents mostly the
toxicological response, this was the one subjected to FatiS-
can that resulted in the identification of 15 BP 20 MF and
8 CC significant features (Table 2a and Additional file 2).
Significant processes included ribosome, ferric ion binding,
rRNA binding, energy and electron transport at the upper end
of the gene rank, indicating that these functions are posi-
tively correlated with the pattern provided by the first
ASCA-genes component of submodel b+ab, i.e, induction
by high BB at 24 h. GO terms such as retinoic metabolic
process, fatty acid beta oxidation, glutamine family amino-acid
metabolism, oxidorreductase activity were found significantly
enriched at the bottom end of the gene rank, indicating
their opposite correlated pattern of change.

NSF potato stress dataset
The Potato Stress dataset consists of three abiotic stress
series (cold, heat and salt treatments) plus one control
series measured along 3 time points on the NSF potato 10
k chip. In general, the three different approaches behaved
in a similar fashion as in the toxicogenomics dataset
although a much richer functional response was observed
in this study. The major gene expression pattern within
this dataset corresponds to the differential behavior of the
cold and salt stresses with respect to the control and heat
conditions. A differential regulation is observed between
the two pairs of series already at 3 hours, peaking at 9
hours and maintained till the end of the experiment (Fig-
ure 9).

Results of simulation study A with the ASCA-functional methodFigure 4
Results of simulation study A with the ASCA-func-
tional method. Changes in sensitivity with the percentage 
of changing genes (co-expression) in the functional class. 
Data points correspond to the mean value of 50 simulations. 
Confidence intervals were omitted due to their negligible 
size.
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The number of functional classes obtained with each of
the methods is shown in Table 2b and a complete list of
all significant GO terms is provided in Additional file 2.
maSigFun analysis gave the smallest amount of significant
GO terms, which had on average 6.4 annotated terms and
a mean inner correlation value of 0.63 ± 0.1. Significant
functions corresponded to profiles of induction (+) or
repression (-) of the class as a whole for the cold and salt
stressors with respect to the control and heat conditions.
Down-regulated processes included photosynthesis-
related terms, fructose metabolism, cell-wall modification, lat-
eral root morphogenesis and reductive pentose-phosphate cycle.
Up-regulated processed referred to protein turnover,
response to hypoxia and glucose stimulus, multi-drug transport,
salicylic acid signaling pathway and diverse enzymatic activ-

ities. PCA-maSigFun again gave a much richer view on cel-
lular processed (447 selected GO terms) and highlighted
additional functions such as response to stress, chitinase
activity, oxidoreductase activity, transmembrane transport,
secretory pathway, jasmonic acid signaling and abscisic acid
pathways, among many others. Finally ASCA-functional
analysis indicated the major pattern of variability as the
difference between the cold and salt stresses on one hand
and heat and control conditions on the other, this pattern
57% comprising of the variability contained in the dataset
(Figure 9). FatiScan analysis on the gene loadings rank
provided by this first component indicated as significant
most of the processes revealed by the other methods, i.e.,
response to several stimuli, protein synthesis and degrada-
tion, diverse hormone signaling pathways, lignin biosynthe-

Table 2: Functional analysis results for experimental dataset. Number of functional terms in each of the three GO branches present in 
the original dataset, after removal of redundant annotations and selected after analysis with each of the proposed methods. A) 
Toxicogenomics study, B) Potato Stress study, C) Arabidopsis IAA treatment study.

A) Toxicogenomics study

SELECTIONS

GO category Original Annotation Non redundant 
Annotations

maSigFun PCA-maSigFun ASCA-Functional STEM Pair-wise

BP 1828 967 7 33 15
MF 992 534 8 15 20
CC 398 243 0 10 8

total 15 58 43 0 49

B) Potato Stress study

SELECTIONS

GO category Original Annotation Non redundant 
Annotations

maSigFun PCA-maSigFun ASCA-Functional STEM Pair-wise

BP 2444 780 23 258 116
MF 943 431 21 141 29
CC 369 203 14 48 46

total 58 447 191 0 46

C) Arabidopsis IAA study

SELECTIONS

GO category Original Annotation Non redundant 
Annotations

maSigFun PCA-maSigFun ASCA-Functional STEM Pair-wise

BP 2640 1120 3 60 201
MF 1769 694 8 24 45
CC 499 260 0 8 61

total 11 92 307 46 284
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sis associated with genes in upper rank positions;
photosynthesis, microtubule-based movement, RNA binding
and lypoxigenase activity as processed over-represented in
bottom rank genes. Taken together, the results of the three
different approaches reveal, at different levels of detail,
the cellular response triggered by the treatments. While
the heat stress does not seem to provoke, at least in this
experiment, a large response, cold and salt treatment pro-
duced similar patterns of transcriptome regulation. Hor-
mone signaling cascades, response to stress markers,
lignin biosynthesis, oxidoreductase activity and protein
metabolism were induced processes while the whole pho-
tosynthetic machinery seems to be halted by these abiotic
stress agents.

Arabidopsis_IAA treatment dataset
A similar pattern of results was obtained with the larger
ATH GeneChip dataset. maSigFun analysis selected rela-
tively few (11) functional categories for which a time and
dose effect was significant (Additional file 2). Selected cat-
egories had between 3 and 6 annotated genes and an
inner correlation value of 0.69 ± 0.15. Regulated func-
tions were indole-3 acetic acid amido synthetase, auxin efflux
transporter activity, lateral root formation (Additional file 3).
These processes represent the basic response to IAA treat-
ment: the hormone uptake, metabolism and its effects on
growth, and showed a maximum induction at 1 hours and
3 hours which was also most pronounced at the higher
IAA dose (Additional file 4). Other significant categories
were gibberelin3-beta-dioxygenase activity and gibberelin-20
oxidase activity which were only induced at 1 h, while the
sulfate adenylyltransferase (ATP) activity and cyclopropane-

Gene expression profiles for two significant representative GO categories obtained by maSigFun analysis of the Toxicogenom-ics datasetFigure 5
Gene expression profiles for two significant representative GO categories obtained by maSigFun analysis of 
the Toxicogenomics dataset. a) Ferric iron binding category induced by high Bromobenzene and b) Bile acid transporter activity 
category repressed by high Bromobenzene. On the left panel, the median value of the functional class is plotted while the right 
panel shows the expression profiles of all genes annotated in the class. Treatments are labeled by color: pink HI, light blue ME, 
dark blue LO, green CO and red UT.

a) Ferric iron binding

b) Bile acid transporter activity
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fatty-acyl phospholipids synthase activity showed a down-reg-
ulation pattern. The PCA-maSigFun analysis of these data
revealed, as expected, the more detailed picture of the
functional aspects of auxin treatment. This method
selected 92 functional classes (Additional file 2) including
GO terms describing the auxin metabolism -indole-3 acetic
acid amido synthetase auxin polar transport, response to auxin
stimulus, auxin:hydrogen symporter activity, auxin mediated
signaling pathway-, the (meristematic) growth -cell morpho-
genesis, cell-wall modification, regulation of meristem size, root
hair elongation- and other regulatory and enzymatic activi-
ties such as transcription factor activity, ligase activity, protein

serine/threonine phosphatase activity (early induction) and
amino acid transporter, pectin esterase inhibitor activity, pro-
teasome complex, oxidorreductase activity and beta-fructofura-
nosidase activity (late induction). Interestingly PCA-
maSigFun shows a regulation of the class response to water
deprivation which corresponds to repression of plasma
membrane aquaporin genes (Additional file 5). Aquapor-
ins mediate hydraulic connectivity across membranes and
although water uptake would be concomitant to growth
the actual downregulation of aquaporins by auxin treat-
ment has been recently demonstrated in strawberry [42].
Another interesting functional pattern revealed by PCA-

Score vs Loading analysis of PCA-maSigFun results on the Toxicogenomics datasetFigure 6
Score vs Loading analysis of PCA-maSigFun results on the Toxicogenomics dataset. a) Score profiles for three 
representative GO-components. b) Loading plot (gene contributions) for the same GO-components, genes labeled by their 
array ID. Blue lines indicate the threshold for significant contribution obtained by re-sampling (see methods).

i)

ii)

iii)

a) b)
Page 12 of 18
(page number not for citation purposes)



BMC Bioinformatics 2009, 10(Suppl 6):S9 http://www.biomedcentral.com/1471-2105/10/S6/S9
maSigFun corresponds to the class auxin:hydrogen sym-
porter activity. The function shows a dose-dependent regu-
lation at 1 hour with partial recovery at 3 hours. This
regulation is positive for three proteins of the auxin efflux
carrier family (PIN3, PIN7 and PIN4) and negative for
other class members, At2g17500 and Atg76520 (Addi-
tional file 5). The auxin efflux carrier is a membrane sys-
tem that regulates auxin transport whose polarity
responds to the cellular environment [43]. The opposite
regulation of members of this complex might reflect this
polarity regulation mechanism. Finally, the ASCA-func-
tional methodology applied to the Arabidopsis dataset
provided the same basic functional profile. In agreement
with the other methodologies, ASCA showed as major
pattern of gene expression variation in this dataset the
dose-dependent differential regulation at time 1 hours
with a slight recovery at time 3 hours which accounted or
77% of the variation associated to the time and treatment
factors (Additional file 5). FatiScan analysis on this prin-
cipal component detected 309 functional classes. Many of
the ASCA functional detected classes were semantically
related to those obtained by PCA-maSigFun. However,
additional GO terms were selected by the ASCA method,
mainly corresponding to general functions such as ribos-
ome, thylakoid, cytoskeleton, transferase, isomerase and oxi-
doreductase activities, possibly revealing the global
biological impact of the growth hormone IAA in the plant
(Additional file 2).

Comparison to other methods
Both experimental datasets were additionally analyzed
with the STEM software and by the method described by
Minguez et al [40]. STEM works by assigning gene profiles

to predefined clusters and evaluating the significance of
the clusters which can then be functionally interrogated
by GO enrichment analysis. On the contrary, Minguez et
al. proposed a methodology whereby pair-wise gene
expression differences between time points are computed
and used as gene ranking criterion to perform multiple
GSAs.

The first problem encountered when using any of the
alternative methods was the difficulty in analyzing multi-
ple series data. In the case of STEM this option was simple
outside the scope of the methodology while in the case of
the pair-wise method considering multiple series would
have implied a large number of pair-wise analyses. We
therefore defined single series datasets to run compari-
sons: the high BB dose in case of the toxicogenomics data-
set and the salt stressor for the potato study. For the
Arabidopsis data two series were defined: one correspond-
ing to the time-effect, by averaging gene expression values
for the two IAA doses at each time point (time series), and
one for the difference between low and high indole-acetic
acid (treatment series).

By running STEM with default parameters on the two one-
series datasets a number of significant genes and clusters
were found in each case: 253 genes/10 clusters for the
high bromobenzene series, 102 genes/3 clusters for the
salt treatment, 10078 genes/6 clusters for the time series
in the Arabidopsis study and 1971 genes/4 clusters for the
treatment series in the ATH data (Table 2 and Additional
file 3). However, when performing GO enrichment anal-
ysis for the gene sets contained in each significant cluster,
no or very few significant functional terms could be

Principal variation pattern of acute-phase response GO category in Toxicogenomics dataset analyzed by PCA-maSigFunFigure 7
Principal variation pattern of acute-phase response GO category in Toxicogenomics dataset analyzed by PCA-
maSigFun. a) Scores plot reveals the profile of the GO-component. b) Loadings plot show gene contributions. Threshold for 
significant contribution are indicated by blue line. Names of positively correlated and negatively correlated significant contribut-
ing genes are indicated.

Positive correlation
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Alpha -1- acid glycoprotein

Alpha -1- inhibitor
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a) Principal variation pattern b) Gene contributions
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obtained in the datasets. Only in the case of the Arabidop-
sis study a functional result was obtained: the time series
indicated 45 GO categories as significant, which mainly
consisted of general function such as chloroplast, structural
constituent of ribosome and membrane, while the treatment
series solely detected the response to auxin stimulus as
enriched. A closer look to the STEM results revealed that
several GO terms did have significant single test p. values
but not when adjusted by FDR, and that significant clus-
ters had related profiles. This suggests that the limitations
of the method to report significant functional classes
might be related to the corrections imposed by the multi-
ple testing scenario and/or by a functionally suboptimal
data partitioning.

In contrast, the pair-wise method did obtain significant
functional results. In total 49 classes were found with the
toxicogenomics dataset, 46 were significant for the potato
stress study and 172 in the Arabidopsis dataset (Table 2
and Additional file 4). In general, the functional activa-
tions portrayed by this method were contained in that
learned by the new methodologies. However, some differ-
ences were also found. For example, in the case of the
potato study, the pair-wise algorithm identified the
repression of glycolsyis and gluconeogenesis at 3 hours post-
stress, which was not observed by any of the proposed
methodologies. In contrast, our methods revealed numer-
ous enzymatic activities, hormone signaling cascades and
tissue developmental processes which were absolutely
transparent to Minguez's method. Moreover, the compar-
ison method did not directly indicate the time profile of
the identified processes and this information needed to be

derived a posteriori from the joint evaluation of the pair-
wise results.

Discussion
The understanding of the cellular and functional implica-
tions of global gene-expression changes measured
through microarrays is in many cases the ultimate and
most important goal of the biological experiments ana-
lyzed by this technology. When the experiment includes a
time component, the data has a dynamic nature that
needs to be incorporated into the functional analysis. The
statistical approaches presented and evaluated in this
study try to exploit this dynamic property from different
perspectives and offer methods that explicitly focus on
coordinative behaviors within the cellular functionality
along the time span. This is in contrast to more traditional
approaches that require a gene selection method and a
partitioning algorithm before reaching the stage of func-
tional assessment. maSigFun is, from the three algorithms
proposed, the method that more strongly concentrates in
co-expression. By fitting one regression model on the
expression data gathered by each functional class, it fol-
lows that class members need to be highly correlated.
Conceptually, maSigFun could be related to the globaltest
developed by Goelman and co-workers [44] where one
statistical model is fitted for a gene set, although the way
the two methodologies are carried out is very different.
While the globaltest treats genes in the set as the dependent
variables of the model, maSigFun regresses on experimen-
tal factors (time and treatment) and considers individual
genes as observations of the values that time and treat-

Principal variation pattern in the Potato Stress datasetFigure 9
Principal variation pattern in the Potato Stress data-
set. The pattern is captured by the first component of sub-
model b+ab (treatment + timextreatment) of ASCA-
functional analysis. The plot shows the score values of this 
first component.
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Principal variation pattern in the Toxicogenomics datasetFigure 8
Principal variation pattern in the Toxicogenomics 
dataset. The pattern is captured by the first component of 
submodel b+ab (treatment + timextreatment) of ASCA-func-
tional analysis. The plot shows the score values of this first 
component.

−1
0

−5
0

5

time

ex
pr

es
si

on
 v

al
ue

6 24 48

UT
CO
LO
ME
HI
Page 14 of 18
(page number not for citation purposes)



BMC Bioinformatics 2009, 10(Suppl 6):S9 http://www.biomedcentral.com/1471-2105/10/S6/S9
ment take for the functional class. The simulation studies
indicated that only classes with a high proportion of coor-
dinately changing genes (~70%) were readily detected by
this method. The experimental datasets confirmed this
tendency and also showed a bias in class selection for
those with a reduced number of annotated genes and a
relatively high (~60%) inner correlation. This is not sur-
prising since large – and frequently more general – func-
tional classes are more likely to include different
regulation patterns and to capture more noise. The conse-
quence is that this method is able to reveal specific cellular
functionalities which are affected by the experimental
conditions but may escape to other interesting phenom-
ena which are not so well defined by a one-block behavior
of the functional class. This, which might be sufficient in
some cases, may imply a partial result in others where a
broader view of the transcriptional changes is sought. In
the case of the toxicogenomics dataset maSigFun analysis
provided a clearly limited result. Although some detected
functions such as heme oxygenase activity and bile acid trans-
porter activity are key makers of the toxicological response
[36], many other important processes such as the xenobi-
otic metabolic process, acute-phase response and epoxide hydro-
lase activity did not show up in this analysis. In the case of
the abiotic stress study, however, maSigFun analysis did
already provide quite an extensive functional view of the
regulated processes, possibly due to the involvement of
numerous specific enzymatic activities and cellular loca-
tions with a low number of annotated genes, and the
more extensive transcriptional profiling (~10 k probes) of
the potato dataset. On the contrary, for the ATH – IAA
treatment study, this method only selected a few func-
tional classes, although these were highly significant for
the biological scenario under study (IAA metabolism,
auxin transport and growth). In all three datasets maSig-
Fun selected specific terms, with a reduced number of
annotated genes which were highly correlated. These
results clearly reveal the detection capacity of the method
and also show that this is applicable for datasets of differ-
ent sizes.

The above-mentioned aspect of the broader evaluation of
the transcriptional response from a functional point of
view is probably best addressed by the PCA-maSigFun
method. In this strategy sub-patterns of time-associated
changes within each functional class are identified by PCA
analysis followed by regression modeling on the principal
components. PCA-maSigFun provided the largest GO
term selection in both experimental datasets and the sim-
ulated study indicated that the method is able to identify
any functional group in which some correlation structure
is present. The method should not be considered as an
enrichment analysis strategy, but more a methodology to
dissect and investigate how genes, functions and co-
expression relate. This exercise can be very interesting in

some cases, such as in the acute-phase example shown in
the toxicogenomics section. Here, PCA-maSigFun clearly
showed the correlation and anti-correlation relationships
between acute-phase positive and negative genes, which
would presumably result in an activation of the process.
Another example of this was the class auxin:hydrogen
symporter activity in the Arabidopsis data, where also
induction and repression of different membrane proteins
was observed. Methods that concentrate only in shared
profiles would fail to identify these classes in which co-
regulation is clearly present. Possibly recently-introduced
term relationships in Gene Ontology (regulates_positively
and regulates_negatively) (see http://www.geneontol
ogy.org/GO.process.guidelines.shtml#reg) would help to
consider these situations more formally, but to our
knowledge there are no functional assessment methods
yet that incorporate these relationship descriptors. It is
also important to indicate that although PCA-maSigFun is
not an enrichment method, it does not return just any
functional class. Firstly, PCA assures that selected catego-
ries must contain a structure of correlation above the level
of noisy variance of each particular dataset and secondly,
the maSigPro analysis on the selected components means
that these patterns can be fitted to a time-dependent
model. In fact, in most of the selected functional terms the
significant profile corresponded to the first component of
the PCA analysis of the class (data not shown). This
implies that the major function-dependent patterns of
variation also corresponded to time-related events and
consequently are consistent with the biological scenario
investigated by the time-course experiment. A possible
draw-back of this method is the large size of the resulting
selections. This means that browsing the analysis results
could be time consuming and that some too general-low
informative classes may "artificially" enlarge the output.
We partially solved this problem by including only non-
annotation redundant GO terms in the analysis (a GO
term is considered annotation redundant if it has the
same set of annotated genes as any of its child terms).
Other options would be to filter results according to the
GO structure (by level, by branch, most specific term, etc)
or to group significant functional patterns by some clus-
tering method. The last option was implemented in the
PCA-maSigFun method and is included in the standard
output.

An intermediate result between the restricted view of
maSigFun and the profusion of classes given by PCA-
maSigFun is obtained by ASCA-functional. In contrast to
the two previous methods, this strategy does not imply a
transformation from a gene profile to a class profile, but
simply ranks genes according to a pattern of variation and
assessing a functional enrichment along this rank. This
pattern of variation is provided by the ASCA-genes model
and, although in this work this is related to time series
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analysis, the method is generally applicable when more
than two conditions are present in the study. In this sense
ASCA-functional can be considered as an extension of
GSA to multi-class and time series data. Other adaptations
of the GSA methodology propose the employment of
diverse statistics such as linear modeling and/or posterior
probability to measure the association of the gene expres-
sion with the phenotype [45], but to our knowledge no
statistics have yet been suggested to consider dynamic
data. The simulation study indicated that our strategy can
identify classes from an inner co-expression level of 50%
– 60%, which is indeed in between the other two method-
ologies presented. ASCA-functional does not provide a
detailed analysis of co-expression as in PCA-maSigPro,
but it does very naturally show the relationship between
functional classes: as the rank provided by the gene load-
ings in the principal components of the ASCA submodels
is a measure of how well each gene follows the pattern
identified as major time-dependent expression trends,
functional classes overrepresented in the upper part of the
rank will follow this pattern while enriched terms at the
bottom positions will have the opposite profile. Another
particularity of this method is that it only reaches major
expression trends, since the PCA models simplify data by
their predominant structures. We argue that this, which
could be suggested as a limitation for a gene-centric anal-
ysis, is of little relevance when considering functional
blocks with coordinated behaviors. Recently, [46] pro-
posed a methodology for gene set enrichment analysis
based on PCA. However, their approach is very different
to ours since the authors use PCA to select gene sets whose
one-component projection best associates to the pheno-
type, rather than to quantify the relationship of individual
gene profiles to a defined generic pattern.

Conclusion
We can conclude that the methodologies presented in this
paper are valuable and offer different approaches to study
microarray time series data from a functional perspective.
The methods should not be considered as competitive but
as providing different insights into the molecular and
functional events taking place within the biological sys-
tem under study.
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