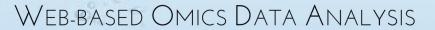
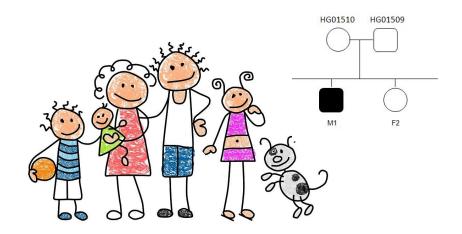
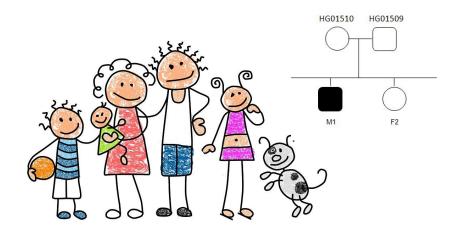
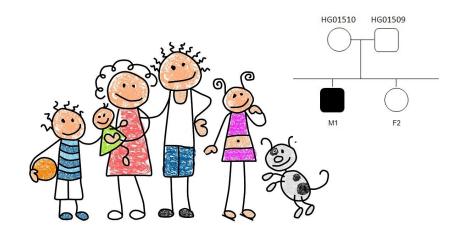
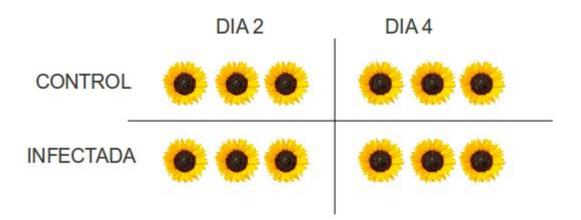

Omics-based biomarkers detection

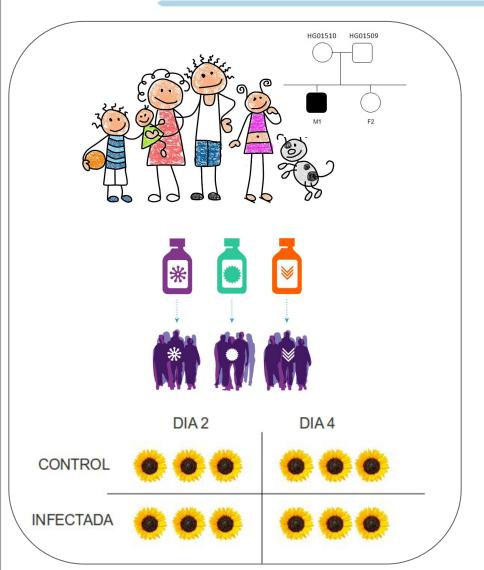

Francisco García García, fgarcia@cipf.es
Bioinformatics & Biostatistics Unit. CIPF


16 Oct 2019







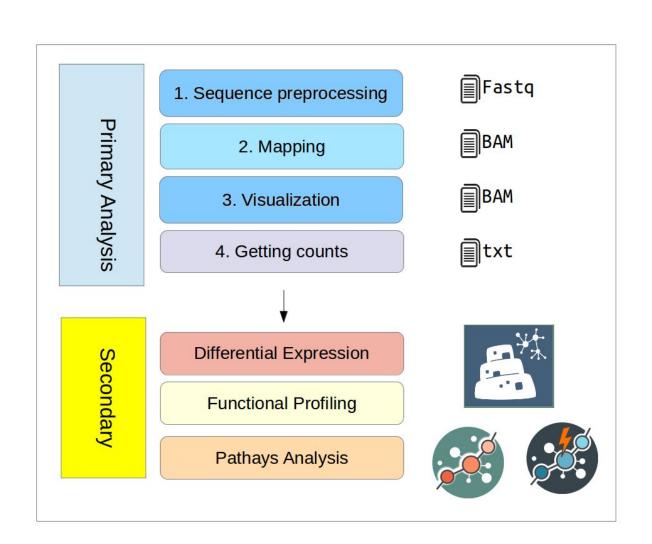


Data analysis workflow

Design

Processing

- <u>Differential</u> expression
- Clustering
- Predictors


Functional analysis

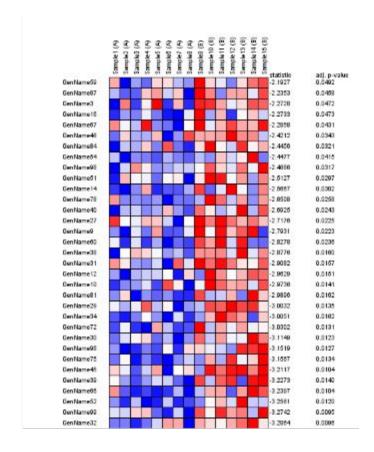
Regulatory elements

miRNA, CisRed Transcription Factor Binding Sites Gene Ontology

Biological Process Molecular Function Cellular Component KEGG pathways

Data analysis workflow

Data analysis workflow


 Differential **Functional** expression Design **Processing** analysis Clustering Predictors Babelomics 5

Input

Samples Tab separated file Samples names col2 #NAMES col1 col3 col4 col5 col6 col7 YGR138C -1.23 -0.81 1.79 0.78 -0.42-0.69 0.58 genes YPR156C -1.76 -0.94 1.16 0.36 0.41 -0.35 1.12 YOR230W -2.19 0.13 0.65 -0.51 0.52 1.04 0.36 YAL018C -1.22 -0.98 0.79 -0.76-0.291.54 0.93 0.85 YBR287W -1.47 -0.83 0.07 -0.811.53 0.65 YCL075W -1.04 -1.11 0.87 -0.14 -0.80 1.74 0.48YDR055w -1.57 -1.171.29 0.23 -0.201.17 0.26 YOR358W -1.53 -1.250.59 -0.30 0.32 0.77 1.41 YBR006W -1.76 -0.720.13 -0.01 -0.231.30 1.28 YBR241C -1.39 -0.42-0.08-0.29 -0.65 1.85 0.98 -1.52 0.26 YCR021c -0.99 0.04 -0.421.19 1.43 YCR061W -1.57 -0.39 0.33-0.54 -0.51 1.59 1.09 0.57 YDL024c -1.27 -1.14 -0.30 -0.471.14 1.46 YDR298C -1.49 -0.87 0.41 -0.47 -0.25 1.38 1.29 -1.69 YER141w -0.60 0.00 0.41-0.62 1.45 1.05

Results

name	statistic	p-value	adj. p-value
200067_x_at	5.5382	0.0000049746	0.00024376
200052_s_at	5.2111	0.00001452	0.00047431
200054_at	5.1028	0.000042635	0.0010445
200009_at	4.2093	0.00019599	0.0027557
200017_at	4.0805	0.00022496	0.0027557
1053_at	3.9461	0.00060822	0.0059605
200013_at	3.767	0.00070427	0.0062744
200071_at	3.518	0.0014872	0.012146
200076_s_at	3.1376	0.0039127	0.024703
177_at	3.0053	0.0061375	0.030074

Expression ~

Unsupervised analysis

Clustering

Supervised analysis

Class prediction

Differential expression

Microarray

- ▶ Class comparison
- ▶ Correlation
- Survival

RNA-seq

Class comparison

- A. Continuous variables:
- Metabolomics
- Proteomics
- Transcriptomics arrays
- Experimental data

Different experimental designs

Expression ~

Unsupervised analysis

Clustering

Supervised analysis

Class prediction

Differential expression

Microarray

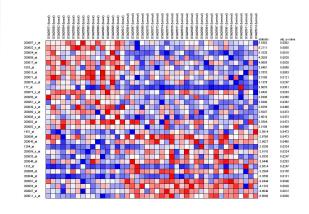
- Class comparison
- Correlation
- Survival

RNA-seq

Class comparison

Class comparison

Methods:


Limma, t-test:

H_o: $\mu_1 = \mu_2$ H_a: $\mu_1 \neq \mu_2$

Fold-change:

 $Log_2(\overline{y_1}/\overline{y_2})$

 $\overline{y}_1 - \overline{y}_2$

 H_0 : $\mu_1 = \mu_2 = ... = \mu_n$

Ha: not Ho

Different experimental designs

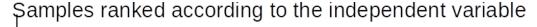
Correlation

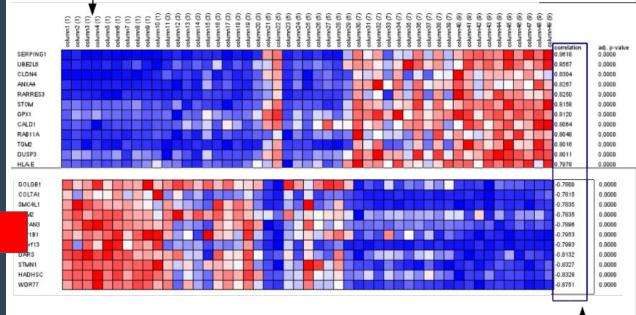
Unsupervised analysis

▶ Clustering

Supervised analysis

Class prediction


Differential expression


Microarray

- Class comparison
- Correlation
- Survival

RNA-seq

Class comparison

Genes ranked by correlation to the continuous variable

Different experimental designs

Survival

Expression ~

Unsupervised analysis

▶ Clustering

Supervised analysis

Class prediction

Differential expression

Microarray

- Class comparison
- ▶ Correlation
- Survival

RNA-seq

Class comparison

Samples ranked according to the survival time

Genes ranked by their relationship with survival time

- Cox model coefficients
- Estimate for the statistics
- p-values

Expression ~

Unsupervised analysis

Clustering

Supervised analysis

▶ Class prediction

Differential expression

Microarray

- ▶ Class comparison
- ▶ Correlation
- Survival

RNA-seq

▶ Class comparison

B. Discrete variables:

- > RNA-Seq
- Experimental data

RNA-Seq Data Analysis Pipeline

Primary

1. Sequence preprocessing

2. Mapping

3. Quantification

Secondary

4. Normalization

5. Differential expression

6. Functional Profiling

Fastq format

- We could say "it is a fasta with qualities":
 - 1. Header (like the fasta but starting with "@")
 - 2. Sequence (string of nt)
 - 3. "+" and sequence ID (optional)
 - 4. Encoded quality of the sequence

```
@SEQ_ID
GATTTGGGGTTCAAAGCAGTATCGATCAAATAGTAAATCCATTTGTTCAACTCACAGTTT
+
!''*((((***+))%%++)(%%%).1***-+*''))**55CCF>>>>>CCCCCCC65
```

BAM/SAM format

```
@PG
      ID:HPG-Aligner VN:1.0
      SN:20 LN:63025520
@SQ
HWI-ST700660 138:2:2105:7292:79900#2@0/1 16
                                               20
                                                    76703 254
GTTTAGATACTGAAAGGTACATACTTCTTTGTAGGAACAAGCTATCATGCTGCATTTCTATAATATCACATGAATA
GIJGJLGGFLILGGJEIFEKEDELIGLJIHJFIKKFELFIKLFFGLGHKKGJLFIJGKFFEFFEFGKCKFHHCCCF AS:i:254
                                                                                   NH:i:1 NM:i:0
HWI-ST700660 138:2:2208:6911:12246#2@0/1 16 20
                                                    76703 254 76=
GTTTAGATACTGAAAGGTACATACTTCTTTGTAGGAACAAGCTATCATGCTGCATTTCTATAATATCACATGAATA
HHJFHLGFFLILEGIKIEEMGEDLIGLHIHJFIKKFELFIKLEFGKGHEKHJLFHIGKFFDFFEFGKDKFHHCCCF AS:i:254
                                                                                      NH:i:1 NM:i:0
HWI-ST700660 138:2:1201:2973:62218#2@0/1 0 20
                                                    76655 254
                                                                76M
AACCCCAAAAATGTTGGAAGAATAATGTAGGAČATTGCAGAAGACGATGTTTAGATACTGAAAGGGACATACTTCT
FEFFGHHHGGHFKCCJKFHIGIFFIFLDEJKGJGGFKIHLFIJGIEGFLDEDFLFGEIIMHHIKL$BBGFFJIEHE AS:i:254
                                                                                     NH:i:1 NM:i:1
HWI-ST700660 138:2:1203:21395:164917#2@0/1 256
                                                 20
                                                      68253 254
NCACCCATGATĀGACCAGTAAAGGTGACCACTTAĀATTCCTTGCTGTGCAGTGTTCTGTATTCCTCAGGACACAGA
#4@ADEHFJFFEJDHJGKEFIHGHBGFHHFIICEIIFFKKIFHEGJEHHGLELEGKJMFGGGLEIKHLFGKIKHDG AS:i:254
                                                                                       NH:i:3 NM:i:1
HWI-ST700660 138:2:1105:16101:50526#6@0/1 16
                                                20
                                                     126103 246
AAGAAGTGCAAACCTGAAGAGATGCATGTAAAGAATGGTTGGGCAATGTGCGGCAAAGGGACTGCTGTTTCCAGC
                                                                                 NH:i:1 NM:i:4
  FEHIGGHIGIGII6FCFHJIFFLJJCJGJHGFKKKKGJJKHFFKJFFFKHFLKHGKJLJGKJLLEFFLJHJJEJJB AS:i:368
```

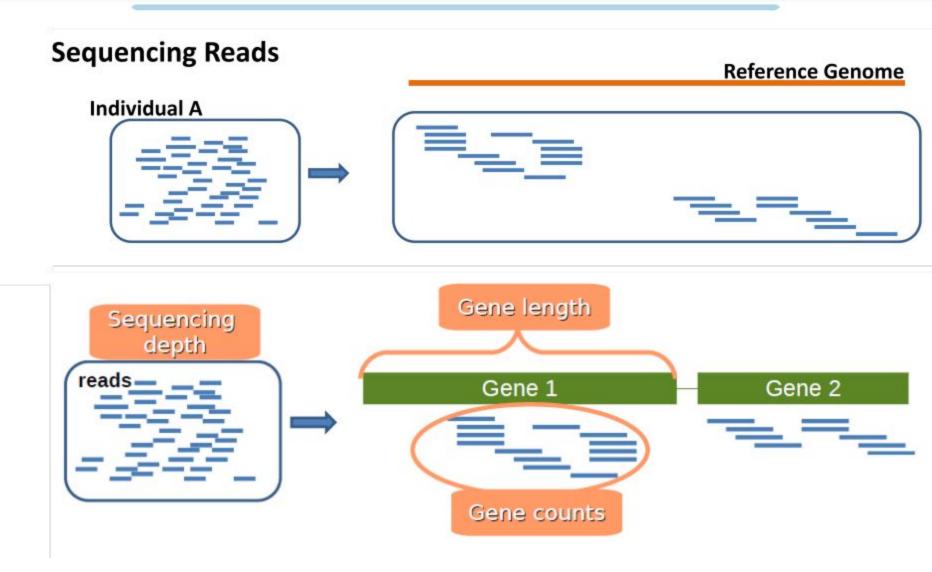
SAM Specification:

http://samtools.sourceforge.net/SAM1.pdf

counts file

Gene

Sample


Ensembl	Gene.Name	T1	T2	T3	T4	T5	WT1	WT2	WT3	WT4	WT5	WT6
ENSMUSG00000000134	Tfe3	312	295	333	258	392	257	344	223	423	277	389
ENSMUSG00000000142	Axin2	165	171	138	166	203	170	172	119	203	147	178
ENSMUSG00000000148	Brat1	213	196	207	224	350	204	268	143	300	177	288
ENSMUSG00000000149	Gna12	684	684	613	545	900	496	672	426	1023	583	797
ENSMUSG00000000154	Slc22a18	3	2	3	2	2	3	3	2	1	1	3
ENSMUSG00000000157	Itgb2I	0	0	0	0	0	0	0	0	0	0	0
ENSMUSG00000000159	lgsf5	0	0	0	0	0	0	0	0	0	0	0
ENSMUSG00000000167	Pih1d2	15	19	6	10	9	5	5	5	7	6	6
ENSMUSG00000000168	Dlat	899	777	967	756	1116	777	1047	614	1155	894	1126
ENSMUSG00000000171	Sdhd	1055	1003	1047	914	1430	939	1192	766	1390	916	1412
ENSMUSG00000000182	Fgf23	1	0	3	1	0	2	0	2	2	0	0
ENSMUSG00000000183	Fgf6	0	0	0	0	0	0	0	1	0	0	0
ENSMUSG00000000184	Ccnd2	1961	1978	1804	1779	2090	1655	2148	1585	2504	1895	2274
ENSMUSG00000000194	Gpr107	784	733	667	615	889	654	818	483	1034	627	1015
ENSMUSG00000000197	Nalcn	1120	1009	1047	917	1356	1129	1202	758	1625	1127	1044

Fastq format

- We could say "it is a fasta with qualities":
 - 1. Header (like the fasta but starting with "@")
 - 2. Sequence (string of nt)
 - 3. "+" and sequence ID (optional)
 - 4. Encoded quality of the sequence

```
@SEQ_ID
GATTTGGGGTTCAAAGCAGTATCGATCAAATAGTAAATCCATTTGTTCAACTCACAGTTT
+
!''*((((***+))%%++)(%%%).1***-+*''))**55CCF>>>>>CCCCCCC65
```

General context

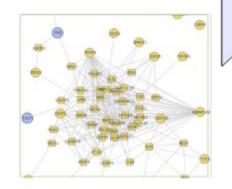
Count Normalization

- Transcript length: within library
- Library size: between libraries
- Many other biases ...
 - Differences on the read count distribution among samples.
 - GC content of the gene affects the detection of that gene (<u>Illumina</u>)
 - sequence-specific bias is introduced during the library preparation

Count Normalization

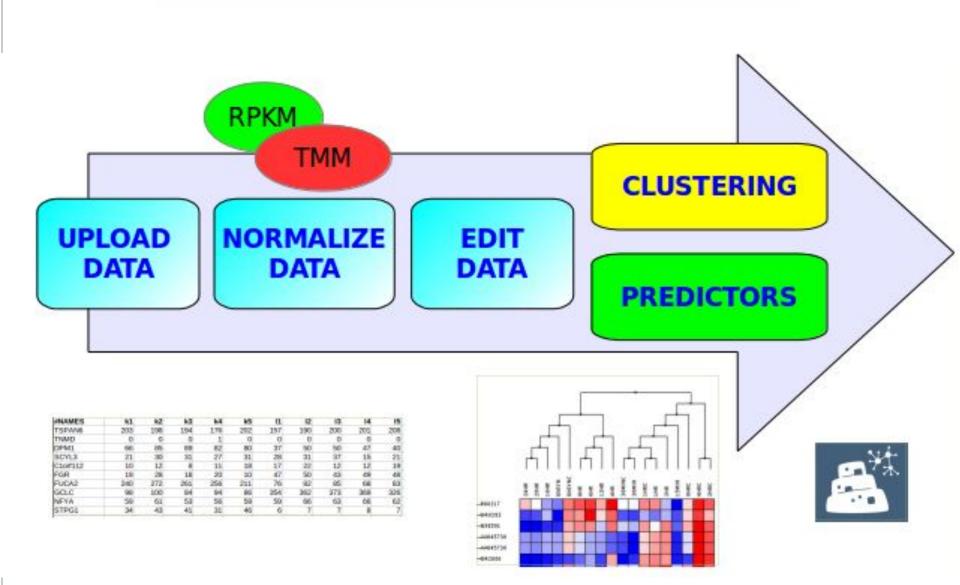
RPKM: Reads Per <u>Kilobase</u> of the transcript per Million mapped reads

$$RPKM = 10^9 imes \frac{C}{N*L}$$


- C is the number of mappable reads mapped onto the gene's exons.
- N is the total number of mappable reads in the experiment.
- L is the total length of the exons in base pairs.
- Fragments Per <u>Kilobase</u> of <u>exon</u> per Million fragments mapped (FPKM),

Working in Babelomics

UPLOAD DATA EDIT DATA NORMALIZATION + DIFFERENTIAL EXPRESSION


FUNCTIONAL PROFILING

#NAMES	k1	k2	k3	804	k5	11	12	13	. 14	15
TSPAN6	203	198	194	176	202	157	190	200	201	208
TNMD	0	0	0	1	0	0	0	0	0	0
DPM1	66	85	89	82	80	37	50	50	47	40
SCYL3	21	30	31	27	31	28	31	37	15	21
C10f112	10	12	B	11	18	17	22	12	12	19
FGR	19	28	18	20	10	47	50	43	49	48
FUCA2	240	272	261	256	211	76	82	85	68	83
GCLC	98	100	84	94	86	354	362	373	369	326
NEYA	59	61	53	.56	59	59	66	63	66	62
STPG1	34	43	41	31	46	6	7	7	8	7

Working in Babelomics

Any question?

