C. Classification

C.1. Unsupervised classification

How can we detect groups of patients with similar expression profile? What microRNAs or genes have a common intensity pattern for an experimental group? Could we explore our data before continuing the analysis?

Activity 1. Online example

- 1. Go to the Babelomics page and select the *Clustering* option from the *Expression menu*.
- 2. Press the online example and you will see how the parameters and form fields are now filled. As you can notice, this example is prepared to perform a clustering analysis on genes (rows) and conditions (columns) using the K-means algorithm with 5 sample-clusters and 15 gene-clusters. Here, the selected distance is Euclidean (square).
- 3. Press Launch job, and wait for your job to be finished.
- 4. When the process finishes, a new blue job is shown at the right side of the web page. Press it to check your results.

Questions

These are some questions that you should be able to answer about the previous example:

- 1. Do you think that the clustering was able to differentiate any group of coexpressed genes?
- 2. How many sample clusters are there? and gene clusters?
- 3. Launch this online example using different clustering methods and compare the results. Which are the differences between the results of these results for different methods?
- 4. What about newick format?

	Clustering 😯
Examples	
fibroblasts k-means clustering	
Select your data	
The files must be on the server to select them. You can upload files using the button inside file browser. File browser WorkSpace/fibroblasts.txt	
Select type of clustering: samples and/or genes	
Clustering of samples Clustering of genes	
Select method	
 O UPGMA SOTA K-means Number of sample-clusters (k-value) Number of gene-clusters (k-value) 15 	
Select distance	
 Euclidean (normal) Euclidean (square) Correlation coeff. (Spearman) Pearson correlation coeff. 	
Job information	
Output folder You can create folders using the button + inside file browser. File browser Job name fibroblasts k-means clustering Description	
Non-hierarchical clustering - K-means demo	

Name: clustering_act1 Description: Non-hierarchical clustering - K-means demo Tool: clustering Output folder: WorkSpace/analysis/20190308152446/

Input parameters

Dataset file name: *fibroblasts.txt* Clustering of: *samples, genes* Method: *kmeans, k-value (samples clustering) = 5, k-value (genes clustering) = 15* Distance: *square*

Clusters in newick format

Clusters of genes genes.nw Clusters of samples samples.nw

Cluster images

Name: *clustering_act1_sota_eu2* Description: *Non-hierarchical clustering-K-means demo* Tool: *clustering* Output folder: *WorkSpace/analysis/20190308152450/*

Input parameters

Dataset file name: *fibroblasts.txt* Clustering of: *samples, genes* Method: *sota* Distance: *square*

Clusters in newick format

Clusters of genes genes.nw Clusters of samples samples.nw

Cluster images

ACTIVITY 2. Clustering analysis for expression data in arthritis

The etiology of **rheumatoid arthritis** is not known with certainty. In order to generate information that clarifies this point, a study of expression microarrays has been proposed, which will allow characterizing this disease at the molecular level and finding some key mechanisms that will improve its prevention and treatment.

Goal

Detect homogeneous groups of subjects according to their transcriptomic profile and evaluate the possible presence of anomalous patterns.

Data

We have normalized data from Affymetrix microarrays for three experimental groups:

- 5 patients with rheumatoid arthritis (RA1-RA5).
- 4 patients with osteoarthritis (OA1-OA4).
- 6 healthy people (H1-H6).

Work plan

- 1. Open the data file of **gene expression** with a spreadsheet and inspect its contents. There will be as many columns as subjects and as many rows as genes.
- 2. Upload this txt file in Babelomics from the "Upload" menu. We will have to indicate the type of data that we upload: "Data matrix expression". This link describes the different types of data that we can use in Babelomics: <u>https://github.com/babelomics/babelomics/wiki/Data-types</u>.
- 3. Next, we select the clustering by samples. We chose the "SOTA" clustering method and the distance "Pearson correlation coefficient". We assign a name to the job and execute it.
- 4. Perform a clustering for genes (to begin with, those that are by default). We assign a name to the job and execute it.

Questions

- 1. Are there groups of samples with a similar transcriptomic profile? How many groups appear?
- 2. Is there any sample that has an anomalous behavior when comparing with other subjects? Any proposal?
- 3. Do you think that if we performed a differential expression analysis we would obtain a large number of differentially expressed genes?
- 4. Any incidence with clustering by genes?

Clustering 😯

Examples							
fibroblasts k-means clustering							
Select your data							
The files must be on the server to select them. You can upload files using the button (1) inside file browser. File browser WorkSpace/rheumatoid_arthritis_rma.txt *							
Select type of clustering: samples and/or genes							
Clustering of samples Clustering of genes							
Select method							
 UPGMA SOTA K-means Number of sample-clusters (k-value) Number of gene-clusters (k-value) 							
Select distance							
 Euclidean (normal) Euclidean (square) Correlation coeff. (Spearman) Pearson correlation coeff. 							
Job information							
Output folder You can create folders using the button + inside file browser. File browser WorkSpace/analysis * Job name clustering_act2 Description Job description							

Name: *clustering_act2_sota_pearson* Description: *Job description...* Tool: *clustering* Output folder: *WorkSpace/analysis/20190308152747/*

Input parameters

Dataset file name: *rheumatoid_arthritis_rma.bxt* Clustering of: *samples* Method: *sota* Distance: *pearson*

Clusters in newick format

Clusters of samples samples.nw

Cluster images

Warnings

Warning: This release limits the heatmap in tree images to 1000 genes

ACTIVITY 3. RNA-Seq data analysis: unsupervised classification or clustering

Goal

Detect homogenous groups of subjects according to their transcriptomic profile.

Data

We are studying a complex disease in which we know that a certain hormone has an important role. For them, we designed an experiment with RNA-Seq in mice with two groups: 6 wild type mice (WT) and 6 mice treated with T3 hormone.

These data were obtained after applying a primary analysis that included the evaluation of the quality of the sequences, mapping and quantification of expression at the gene level. We have expression levels (non-normalized counts) for the 12 mice described in 38,293 genes.

Work plan

- 1. Open the data file of <u>rnaseq 12samples.txt</u> with a spreadsheet and inspect its contents. There will be as many columns as subjects and as many rows as genes.
- 2. Upload this txt file in Babelomics from the "Upload" menu. We will have to indicate the type of data that we upload: "Data matrix expression". This link describes the different types of data that we can use in Babelomics: <u>https://github.com/babelomics/babelomics/babelomics/wiki/Data-types</u>.
- 3. After loading the data, the first step will be normalization. From "Processing / Normalization NGS: RNA-Seq" we will select our file and choose a standardization method (we will start with TMM). Interesting clue: when the normalization finishes, check out the results and in the "Job information" section, look up the identifier of the "Output folder". Then we will need it to indicate to Babelomics where are the normalized data.
- 4. Once the data is already normalized, we are ready to perform the clustering. From "Expression / Unsupervised analysis", select the data (now it's time to select the previous "output folder" where the normalized data are ready).
- 5. Next, we select the clustering by samples. We chose a method of clustering and distance (to begin with, those that are by default). We assign a name to the job and run it.
- 6. Perform a clustering for genes (to begin with, those that are by default). We assign a name to the job and execute it.

Questions

- 1. Are there groups of samples with a similar transcriptomic profile? How many groups appear?
- 2. Is there any sample that has an anomalous behavior when comparing with other subjects?

- 3. Do you think that if we performed a differential expression analysis we would obtain a large number of differentially expressed genes?
- 4. Any incidence with clustering by genes?

		KINA Seq Normalize
Examples		
Normalization example	*	
Select your data		
The files must be on the s You can upload files using	erver to select them. ; the button 🗅 inside file browser.	
File browser	WorkSpace/rnaseq_12samples.txt	х
Select gene length fil	e	
The files must be on the s You can upload files using	erver to select them. ; the button 🗅 inside file browser.	
File browser	WorkSpace/	
Normalization metho	od	
 Normalization methol Choose automatically Choose manually the TMM RPKM 	od y the normalization method e normalization method	
Normalization metho Choose automatically Choose manually the TMM RPKM Job information	od y the normalization method normalization method	
Normalization metho Choose automatically Choose manually the TMM RPKM Job information Output folder You can create folders usi	od y the normalization method normalization method ing the button + inside file browser.	
Normalization metho Choose automatically Choose manually the TMM RPKM Job information Output folder You can create folders usi File browser	od y the normalization method normalization method ing the button + inside file browser. WorkSpace/analysis X	
Normalization metho Choose automatically Choose manually the TMM RPKM Job information Output folder You can create folders usi File browser Job name	od y the normalization method normalization method ing the button + inside file browser. WorkSpace/analysis ×	
Normalization metho Choose automatically Choose manually the TMM RPKM Job information Output folder You can create folders usi File browser Job name normalization	od y the normalization method normalization method ing the button [] + inside file browser. WorkSpace/analysis *	
Normalization metho Choose automatically Choose manually the TMM RPKM Job information Output folder You can create folders usi File browser Job name normalization Description	od y the normalization method normalization method ing the button + inside file browser. WorkSpace/analysis ×	
Normalization metho Choose automatically Choose manually the TMM RPKM Job information Output folder You can create folders usi File browser Job name normalization Description Job info	od y the normalization method normalization method ing the button [] + inside file browser. WorkSpace/analysis *	

🛷 Launch job

RNASeq Normalization

Job information

Name: clustering_act3_normalization Description: Job info... Tool: rnaseq-norm Output folder: WorkSpace/analysis/20190308152933/

Input parameters

Data file: maseq_12samples.txt Method: TMM

Normalized data results

Boxplot expression values after normalization

File normalized results.txt

#NAMES	WT1_T3	WT1	WT2_T3	WT2	WT3_T3	WT3	WT4_T3	WT4	WT5_T3	WT5	WT6_T3	WT6
ENSMUSG0000000001	222.11	201.83	207.41	196.6	194.94	197.71	183.31	185.86	183.51	224.61	221.56	228.34
ENSMUSG000000003	0	0	0	0	0	0	0	0	0	0	0	0
ENSMUSG000000028	4.26	7.51	6	5.26	5.66	6.49	3.99	8.22	5.94	3.63	4.8	4.89
ENSMUSG000000031	1.81	2.14	0.77	1.02	1.07	1.41	0.68	477.62	2.74	1.08	1.3	0.9
ENSMUSG000000037	2.97	4.02	2.04	1.46	1.17	2.82	2.05	4.56	2.28	2.42	0.9	2.31
ENSMUSG000000049	0.52	0.13	0.38	0	0.2	0	0.34	0.37	0.37	0.27	0.2	0.13
ENSMUSG000000056	99.17	110.03	122.59	121.81	131.69	123.06	110.67	118.31	98.7	96.63	111.38	129.08
ENSMUSG0000000058	45.84	41.14	22.71	21.62	20.89	19.19	20.49	22.27	24.4	32.43	17.9	14.66
ENSMUSG0000000078	119.19	141.39	139.93	156.58	131.49	158.9	133.67	150.62	125.02	166.61	127.68	178.97
ENSMUSG000000085	52.17	59.24	60.46	59.45	59.84	58.14	61.03	61.89	60.41	57.6	60.59	55.54
38293 Results											< 1	of 3830 >

Send to edit

Examples
fibroblasts k-means clustering
Select your data
The files must be on the server to select them. You can upload files using the button inside file browser. File browser WorkSpace/rnaseq_12samples.txt *
Select type of clustering: samples and/or genes
Clustering of samples Clustering of genes
Select method
 UPGMA SOTA K-means Number of sample-clusters (k-value) Number of gene-clusters (k-value)
Select distance
 Euclidean (normal) Euclidean (square) Correlation coeff. (Spearman) Pearson correlation coeff.
Job information
Output folder You can create folders using the button + inside file browser. File browser WorkSpace/analysis X Job name JobName Description
Job description

Name: *clustering_act3_upgma_eu* Description: *Job description...* Tool: *clustering* Output folder: *WorkSpace/analysis/20190308153315/*

Input parameters

Dataset file name: *maseq_12samples.txt* Clustering of: *samples* Method: *upgma* Distance: *euclidean*

Clusters in newick format

Clusters of samples samples.nw

Cluster images

Clusters of samples

Warnings

Warning: This release limits the heatmap in tree images to 1000 genes

Clustering 😯

Examples
fibroblasts k-means clustering
Select your data
The files must be on the server to select them. You can upload files using the button inside file browser. File browser WorkSpace/rnaseq_12samples.txt *
Select type of clustering: samples and/or genes
Clustering of samples Clustering of genes
Select method
O UPGMA O SOTA O K-means Number of sample-clusters (k-value) S Number of gene-clusters (k-value)
Select distance
 Euclidean (normal) Euclidean (square) Correlation coeff. (Spearman) Pearson correlation coeff.
Job information
Output folder You can create folders using the button + inside file browser. File browser WorkSpace/analysis X Job name Iustering_act3_SOTA_pearson

Name: *clustering_act3_SOTA_pearson* Description: *Job description...* Tool: *clustering* Output folder: *WorkSpace/analysis/20190308161640/*

Input parameters

Dataset file name: *maseq_12samples.txt* Clustering of: *samples* Method: *sota* Distance: *pearson*

Clusters in newick format

Clusters of samples samples.nw

Cluster images

Clusters of samples

Warnings

Warning: This release limits the heatmap in tree images to 1000 genes

C.2. Supervised classification

Predictors are used to assign a new data (expression, proteins, metabolites...) to a specific class (e.g. diseased case or healthy control) based on a rule constructed with a previous dataset containing the classes among which we aim to discriminate. This dataset is usually known as the **training** set. The rationale under this strategy is the following: if the differences between the classes (our macroscopic observations, e.g. cancer versus healthy cases) is a consequence of certain differences an gene level, and these differences can be measured as differences in the level of gene expression, then it is (in theory) possible finding these gene expression differences and use them to assign the class membership for a new array. This is not always easy, but can be aimed. There are different mathematical methods and operative strategies that can be used for this purpose.

In <u>Babelomics</u>, there is an unsupervised classification module to help in the process of building a "good predictor". In this resource:

- We have implemented several widely accepted strategies so as this tool can build up simple, yet powerful predictors, along with a carefully designed cross-validation of the whole process (in order to avoid the widespread problem of "selection bias").
- Babelomics allows combining several classification algorithms with different methods for gene selection.
- Main indicators to assess the quality of prediction: <u>accuracy</u>, <u>MCC</u>, <u>AUC</u> and <u>RMSE</u>.
- <u>More detailed information about methods</u>.

Activities

We have prepared two activities to know how is possible the generation of predictors from Babelomics.

- 1. <u>Class prediction in acute leukemia</u>.
- 2. <u>Supervised classification for RNA-Seq data of Lung squamous cell carcinoma</u>.

Here you have more <u>detailed information</u> about *supervised classification module* in Babelomics

Activity 1. Class prediction in acute leukemia

In this example we are going to analyse a dataset from Golub et al. (1999). In that paper they were studying two different types of leukemia (acute myeloid leukemia (AML) and acute lymphoblastic leukemia (ALL) in order to detect differences between them. This dataset have 3051 genes and 38 arrays, 27 of them labeled as ALL and 11 of them as AML.

Using Class prediction we are going to build a predictor to try to distinguish between both classes. In the train file we can see 30 arrays, 21 ALL and 9 AML. The rest, 6 ALL and 2 AML, are in the test file for predicting.

You can find the dataset for this exercise in the following files:

- The first one is the file to train the predictor: <u>datatraingolub.txt</u>.
- The second one will be used to predict the classes (test dataset): <u>datatestgolub.txt</u>.

A. Training

- Train with KNN algorithm. Upload the datafile and select the variable TUMOR. In order to get the exercises fast select 5 repeats of 5-fold cross validation. In this exercise do not select any feature selection method.
- Repeat the exercise but select CFS feature selection method, which one works better? Why? how many genes were selected
- Now try with SVM algorithm with no feature selection method, which one performs better? SVM or KNN
- To finish you can try SVM with CFS feature selection method, how many features were selected? Why it matches KNN with CFS?
- Finally, which is the best combination? Why is SVM doing better along than with CFS?

B. Test

- Now we select the option Train and test and select datatraingolub and datatestgolub.
- We can select KNN without feaure method to speed up the exercise.
- In order to check the accuracy of prediction you can see the correct labels for the test file:

ALL ALL ALL ALL ALL AML AML

• Are the predictions right? Do you get the same results with SVM?

Train data:

#NUMBER_FEATURES	3051			
#NUMBER_SAMPLES 30				
#VARIABLE TUMOR	CATEGORICAL {ALL, AML}	VALUES{ALL, ALL, ALL, ALL,	ALL, ALL, ALL, ALL, ALL, ALL, A	LL, ALL, ALL, ALL, ALL, ALL, ALL, ALL,
#NAMES Sample1 Sample2	Sample3 Sample4 Sample5	Sample6 Sample7 Sample8	Sample9 Sample10	Sample11 Sample12 S
AFFX-HUMISGF3A/M97935_M	A_at -1.3942 -1.4277	9 -1.40715	-1.42668 -1.37386	ú -1.36832 -1.47649
AFFX-HUMISGF3A/M97935_M	B_at -1.26278	-0.09052 -0.9959	6 -1.24245	-1.37386 -0.50803 -
AFFX-HUMISGF3A/M97935_3	_at _0.09654	0.90325 -0.07194	0.03232 -0.11978	0.23381 0.23987 0.44201 -0.62533
AFFX-HUMRGE/M10098_5_at	0.21415 2.08754 2.23467	0.93811 3.36576 1.97859	2.66468 -1.21583	3.2605 -1.36149 0.6418 2
AFFX-HUMRGE/M10098_M_at	-1.27045 1.60433	1.53182 1.63728 3.01847	1.12853 2.17016 -1.21583	2.59982 -1.36149 0
AFFX-HUMRGE/M10098_3_at	1.01416 1.70477 1.63845	-0.36075 3.36576	0.9687 2.72368 -1.21583	2.83418 -1.36149 1

Test data

#NAMES Sample1 Sample2 Sample3	Sample4 Sample5	Sample6 Sample7	Sample8			
AFFX-HUMISGF3A/M97935_MA_at	-1.45769	-1.21719	-1.28137	-1.40095	-1.06221 -1.276	19
AFFX-HUMISGF3A/M97935_MB_at	-0.75161	-0.69242	-1.28137	-1.27669	-1.06221 -1.276	19
AFFX-HUMISGF3A/M97935_3_at	0.45695 0.09713	-0.3956 0.343	0.21952 0.20085	-0.43377	-0.12472	
AFFX-HUMRGE/M10098_5_at 3.13533	2.24089 0.5911	-1.40095	-1.06221	-1.27619	0.29598 0.13854	
AFFX-HUMRGE/M10098_M_at 2.76569	1.85697 -1.1013	3 -1.40095	5 -1.06221	1 -1.27619	-1.08902	
AFFX-HUMRGE/M10098 3 at 2.64342	1.73451 1.20192	-1.40095	-1.06221	-1.27619	-1.08902 -1.221	68
AFFX-HUMGAPDH/M33197_5_at	3.16885 3.49405	3.31366 3.04061	-0.48271	2.57603 3.56217	3.30283	
AFFX-HUMGAPDH/M33197 M at	2.8886 3.49405	3.31366 3.21636	-1.06221	2.81349 3.64076	3.1715	

Class prediction 😮 Examples A leukemia data example 🛓 Select train data The files must be on the server to select them. You can upload files using the button 🚳 inside file browser. File browser WorkSpace/datatraingolub.txt ¥ Variables: TUMOR ~ Select test data (Optional) Test data (expression matrix) The files must be on the server to select them. You can upload files using the button 🕰 inside file browser. File browser WorkSpace/datatestgolub.txt 🗶 Algorithms SVM C KNN Random forest Error estimation Validations O Leave-one-out KFold repeats 10 ~ folds 5 🗸 Gene subset selection Subset selection method Correlation-based Feature Selection (CFS) O Principal Component Analysis (PCA) O None Job information Output folder You can create folders using the button 🗅 + inside file browser. File browser WorkSpace/analysis 💥 Job name predi_act1_SVN_10,5_CFS Description Job description

Name: predictor_act1_SVN_10,5_CFS Description: Job description Tool: class-prediction Output folder: WorkSpace/analysis/20190308153554/

Train

Summary Combined results (best 5 per classifier) best classifiers table txt

#index	Classifier	Parameters	Accuracy	MCC	RMSE	AUC	Selected genes
2	SVM	cost=0.6, features=26	1	0.99	0.0082	0.99	L41870_at A55150_at M55150_at X95735_at M27891_at M27891_at M22827_at D80003_at V
3	SVM	cost=0.8, features=26	1	0.99	0.0082	0.99	L 441870 at A 141870 at A 141870 at A 141870 at A 141870 at A 1451100 at A 1451735 at A 14517351 rma1 at A 145287
4	SVM	cost=1, features=26	1	0.99	0.0082	0.99	L41870 at A M55150 at X95735 at M27891 at M2287 at M92087
5	SVM	cost=1.2, features=26	1	0.99	0.0082	0.99	L41870 at A155150 at A15550
6	SVM	cost=1.4, features=26	1	0.99	0.0082	0.99	L41870 at AU5150 at X55150 at X55755 at X55755 at X27891_at X127891_at X1251_ma1_at M2287_at D80003 at T
5 Results							< 1of1 >

Percentage of correct classification per sample/classifier ratios.html

#Sample	cost=0.6, features=26	cost=0.8, features=26	cost=1, features=26	cost=1.2, features=26	cost=1.4, features=26
Sample1	100%	100%	100%	100%	100%
Sample2	100%	100%	100%	100%	100%
Sample3	100%	100%	100%	100%	100%
Sample4	100%	100%	100%	100%	100%
Sample5	100%	100%	100%	100%	100%
Sample6	100%	100%	100%	100%	100%
Sample7	100%	100%	100%	100%	100%
Sample8	100%	100%	100%	100%	100%
Sample9	100%	100%	100%	100%	100%
Sample10	100%	100%	100%	100%	100%
30 Results					< 1 of 3 >

VIVI Classific	ations <u>svm u</u>	aDie.txt					
#index	Classifier	Parameters	Accuracy	MCC	RMSE	AUC	Selected genes
1	SVM	cost=0.4, features=26	0.99	0.97	0.033	0.97	L41870.at A M55150.at X95735.at M27891.at M21551.ma1.at M92287.at
2	SVM	cost=0.6, features=26	1	0.99	0.0082	0.99	L 2010 at L 41870_at M55150_at X55735_at M27891_at M21551_ma1_at M2287_at D90003_ct
3	SVM	cost=0.8, features=26	1	0.99	0.0082	0.99	Lata70_at L41870_at M55150_at X95735_at M27891_at M21551_mat_at M2287_at M
4	SVM	cost=1, features=26	1	0.99	0.0082	0.99	Latoro at Latoro at M55150,at X95735,at M27891,at M27287,at M22287,at D20002,at T
5	SVM	cost=1.2, features=26	1	0.99	0.0082	0.99	L 41870_at L 41870_at M55150_at M2593_at M27891_at M2287_at D9003_at T
6	5VM	cost=1.4, features=26	1	0.99	0.0082	0.99	L 41870 at M55190 at X95735 at M27891 at M21551 mal at M2287 at D80003 at X
7	5VM	cost=1.6, features=26	1	0.99	0.0082	0.99	L41870.at A M55150.at X95735.at M27891.at M27891.at M27287.at M2287.at M228
8	SVM	cost=1.8, features=26	1	0.99	0.0082	0.99	L41870.at A M55150.at X95735.at M27891.at M21551_ma1.at M2287.at D80003.at T
9	SVM	cost=2, features=26	1	0.99	0.0082	0.99	L41870.at A M55150.at W27891.at M27891.at M27891.at M2287.at M2287

SVM results

Test

Test result Test result table <u>test result txt</u>

#Sample_names	SVM cost=0.6, features=26	SVM cost=0.8, features=26	SVM cost=1, features=26	SVM cost=1.2, features=26	SVM cost=1.4, features=26
sample1	ALL	ALL	ALL	ALL	ALL
sample2	ALL	ALL	ALL	ALL	ALL
sample3	ALL	ALL	ALL	ALL	ALL
sample4	ALL	ALL	ALL	ALL	ALL
sample5	ALL	ALL	ALL	ALL	ALL
sample6	ALL	ALL	ALL	ALL	ALL
sample7	ALL	ALL	ALL	ALL	ALL
sample8	ALL	ALL	ALL	ALL	ALL
8 Results					< 1 of 1 >

Activity 2. Supervised classification for RNA-Seq data of Lung squamous cell carcinoma

Data description

RNA-Seq data of Lung squamous cell carcinoma (LUSC) samples taken from <u>The</u> <u>Cancer Genome Atlas (TCGA)</u> data portal.

Goals

- 1. We want to train several classification models in <u>Babelomics</u>.
- 2. After this step, we are evaluating the best way of classifying our data from a test dataset.

Work plan

- 1. Download <u>tca gene lusc train.txt</u>. Contains 11 Normal and 150 Tumor samples.
- 2. Download tca gene lusc test.txt. Contains 6 Normal and 75 Tumor samples.
- 3. Upload your files to Babelomics 5.0. Go to section Expression > Class Prediction
- 4. Try several classification strategies:
 - o Select SVM, KNN and Random Forest
 - o Select Leave-one-out for error estimation
 - o Select Correlation-based Feature Selection (CFS)
- 5. Download test_result.txt
 - o Which supervised classification method(s) works better?
 - o How many genes were used for the prediction?
 - o Are the selected genes same for all methods?

Train data:

TAPTAR	TE TUMOR NORMAL	CATEGORICAL / Tumor Norm	all WATHES/Tumor	Tumor Tumor Tumor Tumor T	umon Tumon Tumon Tumon Tumo
TUNES	TOTOR NORMAL	CATEGORICAL (IUNOI, NOIM	AL, VALOES TUNIOT	CC 2700 013 01D 0051 07	TCC2 CC 2701 012 010 0051
#NAME 5	ICGA.00.2/08.01A.01R	.0851.07 ICGA.66.2778.0	IA.02R.0851.07 ICGA	1.66.2/80.01A.01R.0851.0/	ICGA. 66.2/81.01A.01R.0851
53947	9.12033269527852	29.9005277283081	28.7342251189138	14.5285426114872	7.8257911992123 37.781119
51166	2.10918681857908	0.375391736746637	0.496619165920709	1.77094063623739	1.53013564231596 0
15	0.291388683454659	0.0604743978796771	0.026916390607901	0.172746840374467	0.0614277223351087 0
10157	0.990138003660504	4.08760418371125	1.58202108997136	4.32475106486955	2.67148825342717 1
18	1.7424392445972 1.35	4544706291 3.571106598947	05 0.5106021857	1.806646161227	86 0.308495358123625
10449	6.9266838438003 17.8	713599694458 18.287	6404796313 23.4	376148936468 8.4713	5300478707 19.273240
31	8.29375086788425	8.48171029953546	9.23442465950526	15.3794334433165	13.4546088851303 9
34	14.1050368038883	16.5084258419132	13.3423652870267	9.82824244460122	14.1012729830234 2
38	5.08027168611133	14.9039794566678	12.3998085032034	20.7808542618852	8.76915314428134 9
125981	0.0149388681636844	0.00725637810473756	0.0102513557155259	0.0121331904414195	0.00586271193883552 0
48	3.92784173539057	15.0941323450685	8.96637099200586	6.14505009977491	4.71081393707154 4
10005	7.470032316653 11.4	896676164089 7.8047	6868099444 10.0	06011257266 9.703870372393	1 9.2890685207288 8.0529264

Test data:

#NAMES	TCGA.18.3406.01A.01R	.0980.07 TCGA.21.1070.	01A.01R.0692.07 TC	GA.21.1071.01A.01R.0692.07	TCGA.21.1072.01A.01R.0
53947	3.10791692819214	12.7179067003022	5.5045679083765 11	.5298680267104 20.9	725428742752 32.968
51166	0.470492912462934	0.492971983174168	1.52117970056188	2.9782744087256 2.36	890982724234 2.0052
15	0.0229164652565298	0.0418593822836806	0.0758421627968419	0.00439674274509941	0.0352382250441072
10157	2.61891332299977	3.37830618720845	3.5744136963757 4.	1211546468889 9.1424353369	4.629293270954
18	1.02888837392318	1.22695576020404	0.406710364722754	1.00832653020294	2.23549060340707
10449	16.9447631782568	16.7172169313881	9.21859101431406	3.67516409693883	3.16469073946696
31	6.87507488221175	8.91160855767769	20.9312901997778	15.6690937243102	15.5555505127052
34	18.6506334571702	9.09153794682686	15.3329522967228	11.0171134209453	7.50312496309952
38	15.8096302890405	11.1303030994791	17.8443219722196	25.0956833871361	17.0736388802513

Class prediction ?

Examples	
A leukemia da	ta example
Select train o	Jata
The files must b You can upload	e on the server to select them. files using the button 🏠 inside file browser.
File brov	wser WorkSpace/tcga_gene_lusc_train.txt X
Variables:	TUMOR_NORMAL ~
Select test d	ata (Optional)
Test data (expre The files must b You can upload	ession matrix) e on the server to select them. files using the button ጭ inside file browser.
File brov	wser WorkSpace/tcga_gene_lusc_test.txt ¥
Algorithms	
SVM KNN Random fo	rest
Error estima	tion
Validations O Leave-one- O KFold repeats 10 ~ folds 5 ~	-out
Gene subset	selection
Subset selectio Correlation Principal C None	n method n-based Feature Selection (CFS) component Analysis (PCA)
Job informat	tion
Output folder You can create File brow Job name ed_act2_allmet	folders using the button + inside file browser. wser WorkSpace/analysis * thods_10,5_CFS

Name: predictor_act2_allmethods_10,5_CFS Description: Job description Tool: class-prediction Output folder: WorkSpace/analysis/20190308153900/

Train

Summary

†index	Classifier	Parameters	Accuracy	MCC	RMSE	AUC	Selected genes
ţ	KNN	knn=5, features=50	1	0.99	0.015	1	2203 3295 1589 29948 10606 5009
	KNN	knn=3, features=50	1	0.99	0.017	1	2203 3295 1589 29968 10606 5009
	KNN	knn=7, features=50	1	0.98	0.024	1	2203 3295 1589 29968 10606 5009
	KNN	knn=8, features=50	1	0.98	0.028	1	60495 4967 2593 5095 48 158
	KNN	knn=9, features=50	1	0.98	0.04	1	2203 3295 1589 29968 10606 5009
	SVM	cost=0.2, features=50	0.93	0	0.26	0.5	2/03 3295 1589 29988 10606 5009
	SVM	cost=0.4, features=50	0.93	0	0.26	0.5	2203 3295 1589 29968 10606 5009
	SVM	cost=0.6, features=50	0.93	0	0.26	0.5	2203 3295 1599 29968 10006

ercentage of correct classification per sample/classifier ratios.html										
#Sample	knn=5, features=50	knn=3, features=50	knn=7, features=50	knn=8, features=50	knn=9, features=50	cost=0.2, features=50	cost=0.4, features=50	cost=0.6, features=50	cost=0.8, feature	
TCGA.66.2768.01A.01R.0851.07	100%	100%	100%	100%	100%	100%	100%	100%	100%	
TCGA.66.2778.01A.02R.0851.07	100%	100%	100%	100%	100%	100%	100%	100%	100%	
TCGA.66.2780.01A.01R.0851.07	100%	100%	100%	100%	100%	100%	100%	100%	100%	
TCGA.66.2781.01A.01R.0851.07	100%	100%	100%	100%	100%	100%	100%	100%	100%	
TCGA.66.2782.01A.01R.0851.07	100%	100%	100%	100%	100%	100%	100%	100%	100%	
TCGA.66.2785.01A.01R.0851.07	100%	100%	100%	100%	100%	100%	100%	100%	100%	
TCGA.66.2786.01A.01R.0851.07	100%	100%	100%	100%	100%	100%	100%	100%	100%	
TCGA.60.2723.01A.01R.0851.07	100%	100%	100%	100%	100%	100%	100%	100%	100%	
TCGA.60.2724.01A.01R.0851.07	100%	100%	100%	100%	100%	100%	100%	100%	100%	
TCGA.60.2726.01A.01R.0851.07	100%	100%	100%	100%	100%	100%	100%	100%	100%	
161 Results										

KNN results	
KNN classifications	KNN table.txt

#index	Classifier	Parameters	Accuracy	MCC	RMSE	AUC	Selected genes
1	KNN	knn=2, features=50	1	0.97	0.016	0.99	2203 A 3295 357 357 357 357 357 357 357 357 357 35
2	KNN	knn=3, features=50	1	0.99	0.017	1	2203 A 3295 3 1389 29988 10606 5009 5772 4
3	KNN	knn=4, features=50	1	0.98	0.017	1	2203 A 3295 3 1389 29988 10606 5009 5772 7
4	KNN	knn=5, features=50	1	0.99	0.015	1	2203 A 295 3295 3295 3295 3295 3295 3295 3295
5	KNN	knn=ő, features=50	1	0.98	0.021	1	2003 A 3295 S 559 S 559 S 559 S 559 S 559 S 559 S 550
6	KNN	knn=7, features=50	1	0.98	0.024	1	2203 A 3295 1 1589 29988 1 10606 5009 Y

SVM results SVM classifications <u>SVM table but</u>

#index	Classifier	Parameters	Accuracy	MCC	RMSE	AUC	Selected genes
1	SVM	cost=0.4, features=50	0.93	0	0.26	0.5	2003 3295 1589 29968 100606 5009 5773
2	SVM	cost=0.6, features=50	0.93	0	0.26	0.5	2203 A 3295 A 32
3	SVM	cost=0.8, features=50	0.93	0	0.26	0.5	2203 A 3295 A 5599 A 55
4	SVM	cost=1, features=50	0.93	0	0.26	0.5	2203 A 3295 A 5497 A 54
5	SVM	cost=1.2, features=50	0.93	0	0.26	0.5	2203 A 3295 A 5599 A 5599 A 5579 A 55
ó	SVM	cost=1.4, features=50	0.93	o	0.26	0.5	2203 A 3295 A 32
7	SVM	cost=1.6, features=50	0.93	0	0.26	0.5	2203 A 3295 A 32
8	SVM	cost=1.8, features=50	0.93	0	0.26	0.5	2203 * 3295 * 1589 29968 10066

Random forest results

the states	Classifier	Demoster	0	MOC	DIACE	ALLC	Coloriad
Findex	Classmer	Parameters	Accuracy	MCC	RMDE	AUC	Selected genes
1	Random forest	num_trees=15, features=50	0.99	0.94	0.078	1	2203 3295 1589 29968 10606 5009
2	Random forest	num_trees=20, features=50	1	0.96	0.076	1	2203 3295 1589 29968 10606 5009
3	Random forest	num_trees=25, features=50	1	0.97	0.074	1	2203 3295 1589 29968 10606 5009
4	Random forest	num_trees=30, features=50	1	0.97	0.074	1	\$773 2203 3295 1589 29968 10606 5009
5	Random forest	num_trees=35, features=50	1	0.97	0.073	1	2203 3295 1589 29968 10606 5009
5	Random forest	num_trees=40, features=50	1	0.97	0.073	1	2203 3295 1589 29968 10606 5009
7	Random forest	num_trees=45, features=50	1	0.97	0.073	1	2203 3295 1589 29968 10606

Test

Test result Test result table <u>test result.txt</u>

#Sample_names	KNN k=5, features=50	KNN k=3, features=50	KNN k=7, features=50	KNN k=8, features=50	KNN k=9, features=50	SVM cost=0.2, features=50	SVM cost=0.4, features=50	SVM cost=0.6, features=50
sample1	Tumor	Tumor	Tumor	Tumor	Tumor	Tumor	Tumor	Tumor
sample2	Tumor	Tumor	Tumor	Tumor	Tumor	Tumor	Tumor	Tumor
sample3	Tumor	Tumor	Tumor	Tumor	Tumor	Tumor	Tumor	Tumor
sample4	Tumor	Tumor	Tumor	Tumor	Tumor	Tumor	Tumor	Tumor
sample5	Tumor	Tumor	Tumor	Tumor	Tumor	Tumor	Tumor	Tumor
sampleó	Tumor	Tumor	Tumor	Tumor	Tumor	Tumor	Tumor	Tumor
sample7	Tumor	Tumor	Tumor	Tumor	Tumor	Tumor	Tumor	Tumor
sample8	Tumor	Tumor	Tumor	Tumor	Tumor	Tumor	Tumor	Tumor
sample9	Tumor	Tumor	Tumor	Tumor	Tumor	Tumor	Tumor	Tumor
sample10	Tumor	Tumor	Tumor	Tumor	Tumor	Tumor	Tumor	Tumor
81 Results								