
HiPathia Models of signaling pathway activity

Marta R. Hidalgo Systems Genomics Lab, CIPF January 10th, 2019

Signaling pathways

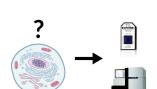
Chemical signals

- Hormones
- Neurotransmiters
- Growth factors
- Cytokines
- Drugs

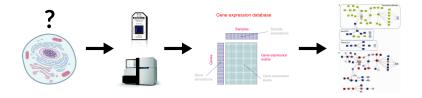
Activation & Inhibition

- Phosphorilation
- Dephosphorilation
- Glycosylation
- Ubiquitination
- Methylation

Cellular Function


- Apoptosis
- Survival
- Growth
- Migration
- Proliferation

Pathway Analysis


Methods

?

• **DEGraph**: Based on DE

• Clipper: 2 test method

• SPIA: Impact factor

Sub-SPIA: Find subnetwork by DE and apply SPIA

HiPathia: Computes signal for each sample

The Annals of Applied Statistics 2012, Vol. 6, No. 2, 561–600 DOI: 10.1214/11-AOAS528 © Institute of Mathematical Statistics, 2012

> MORE POWER VIA GRAPH-STRUCTURED TESTS FOR DIFFERENTIAL EXPRESSION OF GENE NETWORKS

BY LAURENT JACOB, PIERRE NEUVIAL AND SANDRINE DUDOIT

• **DEGraph**: Based on DE

• Clipper: 2 test method

• SPIA: Impact factor

Sub-SPIA: Find subnetwork by DE and apply SPIA

HiPathia: Computes signal for each sample

Published online 21 September 2012

Nucleic Acids Research, 2013, Vol. 41, No. 1 e19 doi:10.1093/nar/gks866

Along signal paths: an empirical gene set approach exploiting pathway topology

Paolo Martini¹, Gabriele Sales², M. Sofia Massa³, Monica Chiogna⁴ and Chiara Romualdi^{2,*}

• **DEGraph**: Based on DE

• Clipper: 2 test method

• SPIA: Impact factor

Sub-SPIA: Find subnetwork by DE and apply SPIA

HiPathia: Computes signal for each sample

RIOINFORMATICS

ORIGINAL PAPER

Vol. 25 no. 1 2009, pages 75-82 doi:10.1093/bioinformatics/btn577

Systems biology

A novel signaling pathway impact analysis

Adi Laurentiu Tarca^{1,2}, Sorin Draghici^{1,*}, Purvesh Khatri¹, Sonia S. Hassan², Pooja Mittal², Jung-sun Kim², Chong Jai Kim², Juan Pedro Kusanovic² and Roberto Romero²

- DEGraph: Based on DE
- Clipper: 2 test method
- SPIA: Impact factor
- Sub-SPIA: Find subnetwork by DE and apply SPIA
- HiPathia: Computes signal for each sample

DEGraph: Based on DE

Clipper: 2 test method

SPIA: Impact factor

Sub-SPIA: Find subnetwork by DE and apply SPIA

HiPathia: Computes signal for each sample

www.impactjournals.com/oncotarget/

Oncotarget, 2017, Vol. 8, (No. 3), pp: 5160-5178

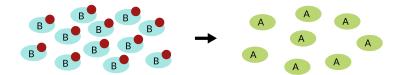
Research Paper

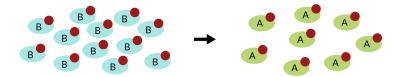
High throughput estimation of functional cell activities reveals disease mechanisms and predicts relevant clinical outcomes

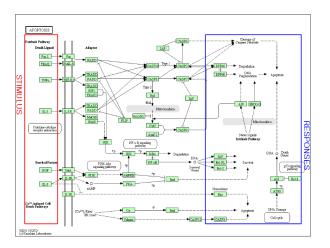
Marta R. Hidalgo¹, Cankut Cubuk¹, Alicia Amadoz^{1,2}, Francisco Salavert^{1,3}, José Carbonell-Caballero¹, Joaquin Dopazo^{1,2,3}

Pathway Analysis

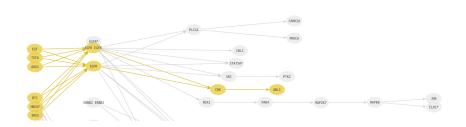
HiPathia


Intuitive idea


Intuitive idea

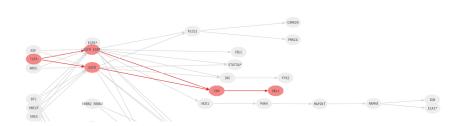

Intuitive idea

Pathways layout


Take pathways information from KEGG, www.kegg.jp

Meaningful subpathways

Effector subpathway

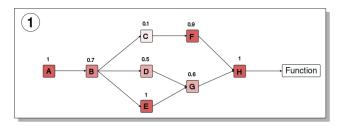

Subpathway including any node from any receptor to one effector protein

Meaningful subpathways

Decomposed subpathway

Subpathway including any node from one receptor to one effector protein

- Compute a node score based on the expression
- © Compute signal passing through each node n


$$S_n = v_n \cdot (1 - \prod_{s_i \in A} (1 - s_i)) \cdot \prod_{s_j \in I} (1 - s_j)$$

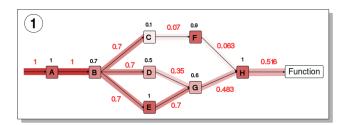
 S_n : Signal value through n V_n : Node value

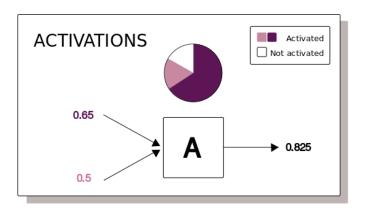
v_n: Node value

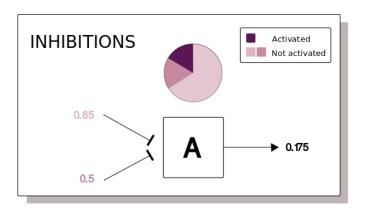
A: Activation edges

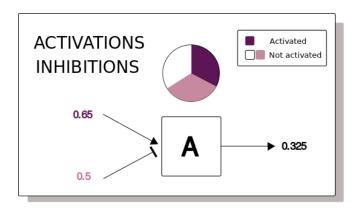
: Inhibition edges

- Ompute a node score based on the expression
- 2 Compute signal passing through each node n

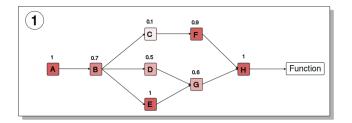

$$S_n = v_n \cdot (1 - \prod_{s_i \in A} (1 - s_i)) \cdot \prod_{s_j \in I} (1 - s_j)$$

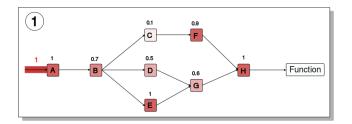

 S_n : Signal value through n


 v_n : Node value

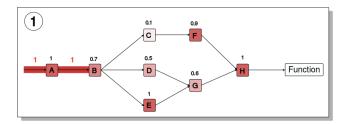

A: Activation edges

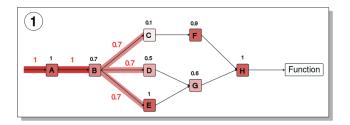
1: Inhibition edges

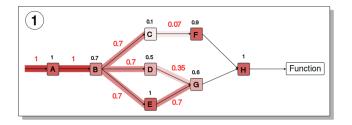


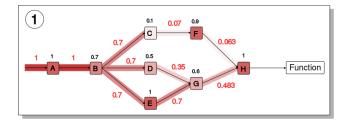


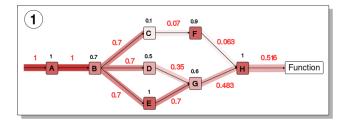
45

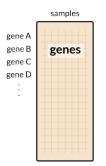

- Input signal 1 in any input node
- Compute the signal through each node iteratively
- Loops can be processed
- Subpathway signal: last node signal

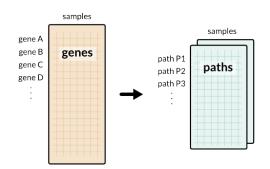

- Input signal 1 in any input node
- Compute the signal through each node iteratively
- Loops can be processed
- Subpathway signal: last node signal

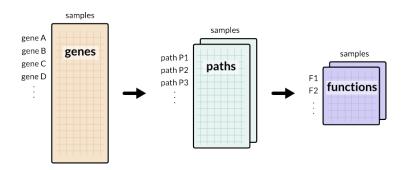

- Input signal 1 in any input node
- Compute the signal through each node iteratively
- Loops can be processed
- Subpathway signal: last node signal

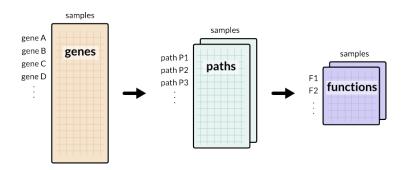

- Input signal 1 in any input node
- Compute the signal through each node iteratively
- Loops can be processed
- Subpathway signal: last node signal

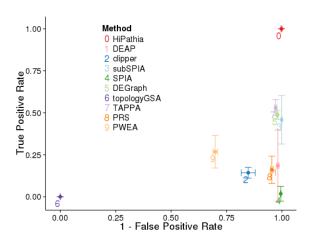

- Input signal 1 in any input node
- Compute the signal through each node iteratively
- Loops can be processed
- Subpathway signal: last node signal


- Input signal 1 in any input node
- Compute the signal through each node iteratively
- Loops can be processed
- Subpathway signal: last node signal


- Input signal 1 in any input node
- Compute the signal through each node iteratively
- Loops can be processed
- Subpathway signal: last node signal


- 多
- Estimate effector proteins activation
- Annotate effector proteins functions
 - Uniprot keywords
 - GO annotation


- Estimate effector proteins activation
- Annotate effector proteins functions
 - Uniprot keywords
 - GO annotation


- Estimate effector proteins activation
- Annotate effector proteins functions
 - Uniprot keywords
 - GO annotation

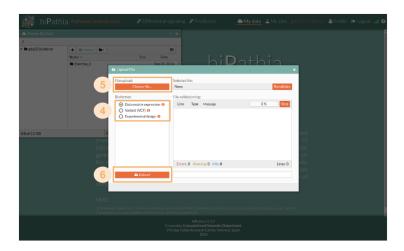
- Estimate effector proteins activation
- Annotate effector proteins functions
 - Uniprot keywords
 - GO annotation

Method comparison

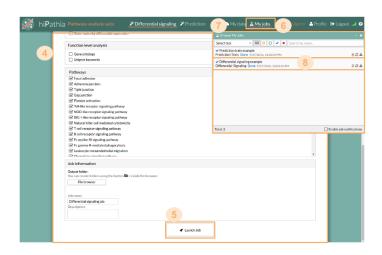
HiPathia

Web tool

Logging in


hipathia2.babelomics.org

Upload data


Upload data

Workflow

Workflow

Tools

Differential signaling

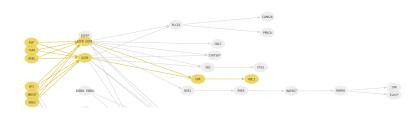
- · Compare signal activity between two conditions
- Correlate path value with a continuous variable

Prediction

- Construct a predictor from a dataset
- Predict classes from new dataset using the predictor

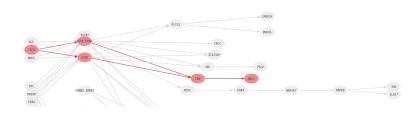
Tools

Differential signaling

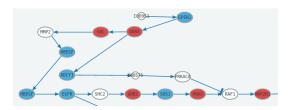

- Compare signal activity between two conditions
- Correlate path value with a continuous variable

Prediction

- Construct a predictor from a dataset
- Predict classes from new dataset using the predictor


Parameters

- Decompose paths
- Color nodes by differential expression


Parameters

- Decompose paths
- Color nodes by differential expression

Parameters

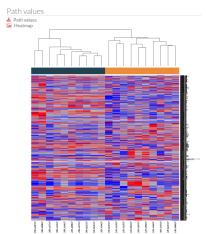
- Decompose paths
- Color nodes by differential expression

Parameters

- Decompose paths
- Color nodes by differential expression

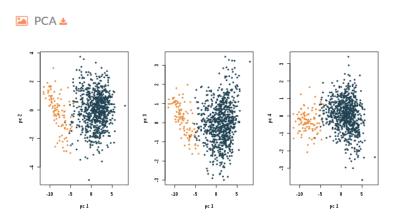
2 Function level analysis

Perform analysis with the following functional annotations:


- Gene ontology
- Uniprot keywords

HiPathia

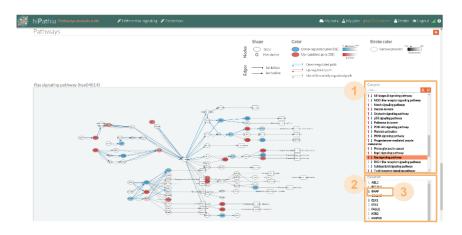
Results

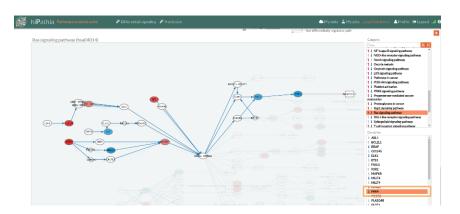

Heatmap

Graphical representation of data where values in a matrix are represented as colors

Principal Components Analysis (PCA)

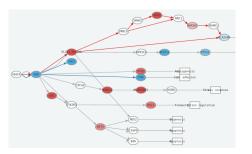
Statistical procedure to convert a set of observations into a set of values of linearly uncorrelated variables

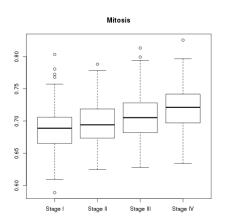



Results table

- Table of results for the comparison.
- Ordered by the FDR p-value.

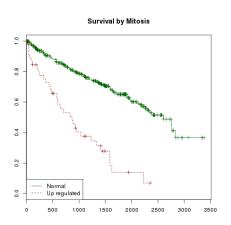
🖽 Path significance 🕹


circuit/term ErbB signaling pathway: STAT5A Adrenergic signaling in cardiomyocytes: SCN1B	UP/DOWN DOWN	statistic	p.value 0.000	FDRp.value
	DOWN	-16.076	0.000	
Adrenergic signaling in cardiomyocytes: SCN1B			0.000	0.000
, , , , , , , , , , , , , , , , , , , ,	DOWN	-15.987	0.000	0.000
Thyroid hormone signaling pathway: RCAN1	DOWN	-15.966	0.000	0.000
cGMP-PKG signaling pathway: PDE2A	DOWN	-15.909	0.000	0.000
cGMP-PKG signaling pathway: C00144	DOWN	-15.786	0.000	0.000
AMPK signaling pathway: LEPR	DOWN	-15.761	0.000	0.000
Hippo signaling pathway: FGF1	DOWN	-15.728	0.000	0.000
Adherens junction: SMAD4 SMAD2	DOWN	-15.727	0.000	0.000
Adipocytokine signaling pathway: PTPN11	DOWN	-15.727	0.000	0.000
p53 signaling pathway: CDK1 CCNB3	UP	15.693	0.000	0.000



HiPathia

Further analysis


Disease progression analysis

Search for features which increase with the progression of the disease

Survival analysis

Analysis of time duration until one or more events happen

Exercises

HiPathia exercises

Exercise 1

Do the Differential signaling worked example

Exercise 2

Do the Prediction worked example

- Train a predictor following these steps
- 2 Test a new dataset following these steps

Exercises 3,4,...

Do the Differential signaling exercises