Unsupervised Classification

Francisco García García, fgarcia@cipf.es

Outline

- 1. Introduction
- 2. Clustering methods
- 3. Distance parameters
- 4. Exercises on Babelomics

Outline

- 1. Introduction
- 2. Clustering methods
- 3. Distance parameters
- 4. Exercises on Babelomics

Introduction

Design

Processing

- Differential expression
- Clustering
- Predictors

Functional analysis

Expression Data Analysis Pipeline

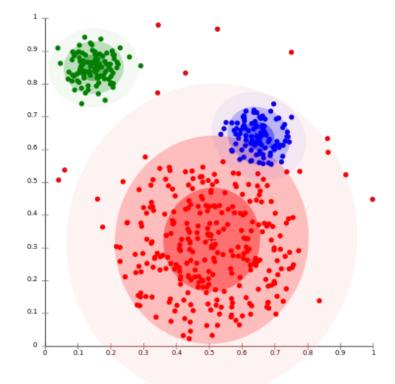
1 What is clustering analysis?

A good clustering method will produce high quality clusters with:

High intra-class similarity (Green, Blue >> Red)

Low inter-class similarity (Green vs Blue, Green vs Red

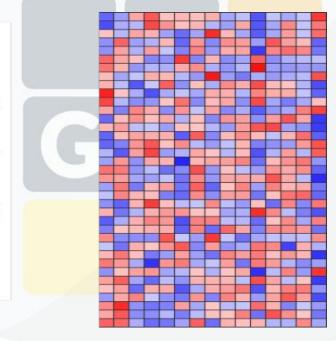
>> Blue vs Red)



1 Input data

- Tab delimited file with numerical values (intensity)
- Genes in rows samples in columns
- No class assigned to the samples (arrays)

gene1	10.23	9.98	10.41	10.55	10.65	9.69
gene2	10.51	9.74	10.65	10.63	10.43	10.35
gene3	9.89	10.02	9.89	11.03	10.21	10.77
gene4	10.25	10.83	8.94	10.16	10.49	10.46
gene			******			



1 Goals

 Are there some genes with a similar pattern of gene expression across arrays?
The unit (individual) of analysis is the gene

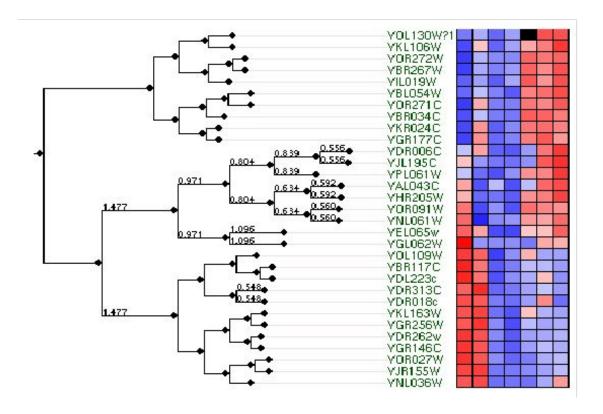
 Are there some arrays (biological samples) with the same pattern of gene expression across genes?

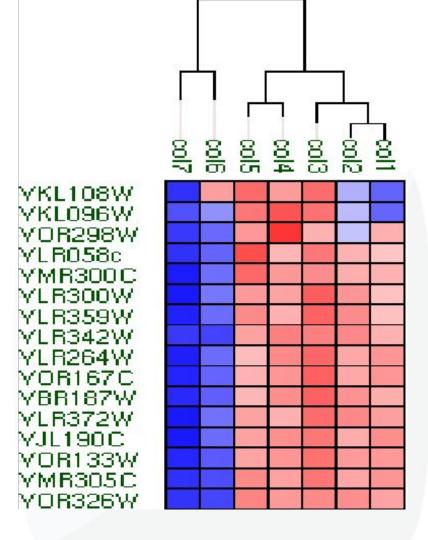
The unit (individual) of analysis is the sample

Goals

Array clustering

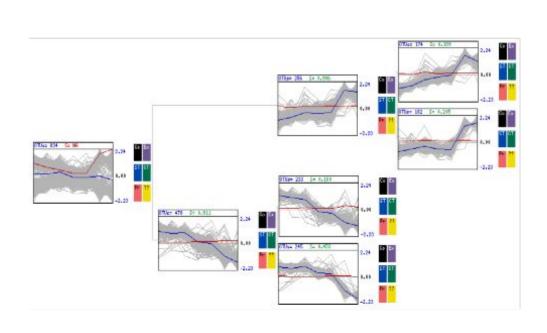
Gene clustering

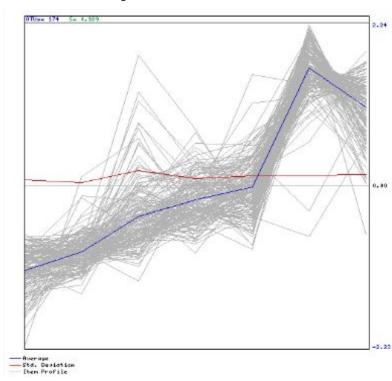




1 Gene cluster utility

- Find genes that behave the same across patients
- Indicate possible gene functionality
- Find temporal patterns of gene expression

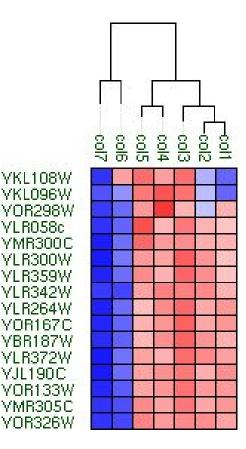




1

Array clustering utility

- Discover new subgroups in a set of patients of the same disease
- Descriptive analysis
- Perform quality control cheeking:
 - Outlier (array) detection
 - Batch effect assessment



Steps for clustering analysis

- 1. Hierarchical or non hierarchical?
- 2. Choose a clustering method.
- 3. Choose a distance.

Outline

- 1. Introduction
- 2. Clustering methods
- 3. Distance parameters
- 4. Exercises on Babelomics

2 Clustering methods

- **Hierarchical** Methods
 - Aggregative
 - Divisive

Provide a tree

- **Non Hierarchical** Partitioning Methods
 - Usually need the number of clusters to be set
 - Do not provide a tree

Aggregative hierarchical clustering

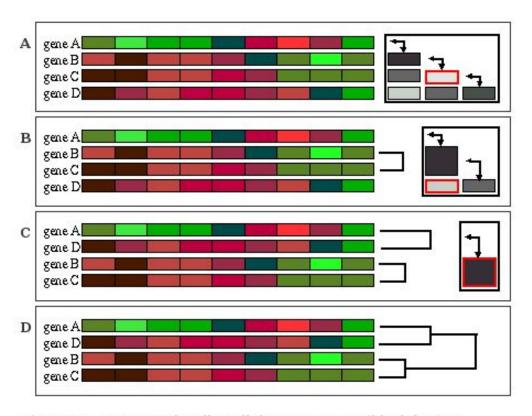
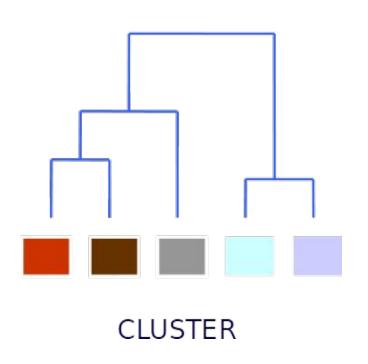


Fig. 1.5.1 UPGMA: the all-to-all distance matrix (black box) is calculated and two closest elements (red box) are merged. (A) The two closest elements are genes B and C. (B) The genes B and C are merged and the all-to-all distance matrix is calculated again using the new cluster instead of the genes B and C. Now, the two closest elements are genes A and D. (C) The genes A and D are also merged. The elements must be reordered to fit the topology of the tree. The all-to-all distance matrix is calculated again with the two remaining elements. (D) The process ends when all the complete dendogram is built.

Aggregative hierarchical clustering

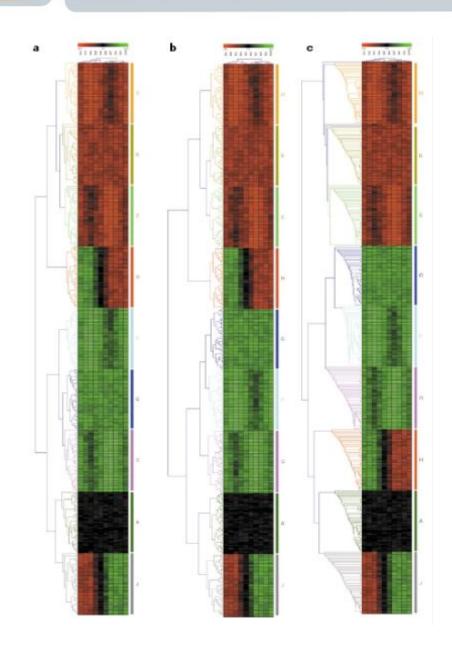


Relationships among profiles are represented by branch lengths.

The closest pair of profiles are recursively linked until the complete hierarchy is reconstructed

Allows to explore the relationship among groups of related genes at higher levels.

Different aggregative criteria



Different point to set distance definition

a) Average linkage

b) Single linkage

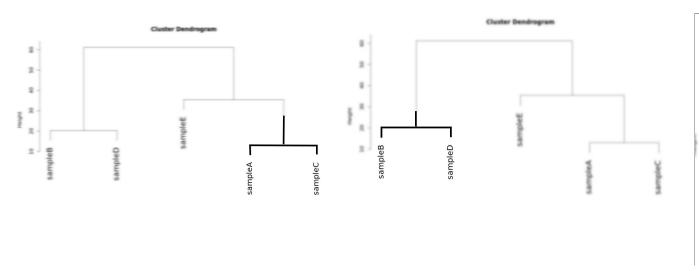
c) Complete linkage

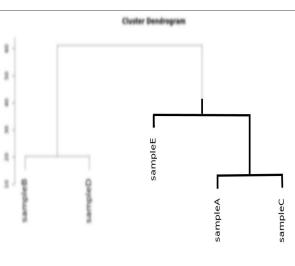
Clustering methods in Babelomics

- Unweighted Pair Group Method with Arithmetic Mean (UPGMA)
- 2. Self-Organizing Tree Algorithm (SOTA)
- 3. K-Means

2 UPGMA

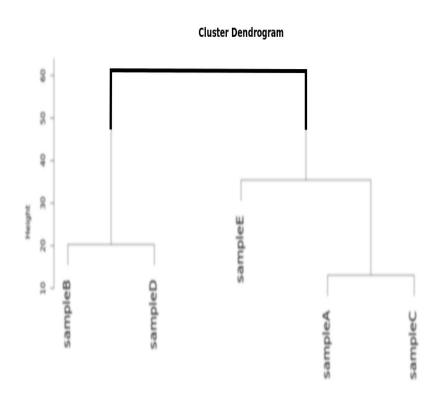
- UPGMA is a simple agglomerative (bottom-up) hierarchical clustering method.
- This is a "bottom up" approach: each observation starts in its own cluster, and pairs of clusters are merged as one moves up the hierarchy.
- It is not the more accurate among the methods but is really extensively used especially for gene expression data. Provides a tree

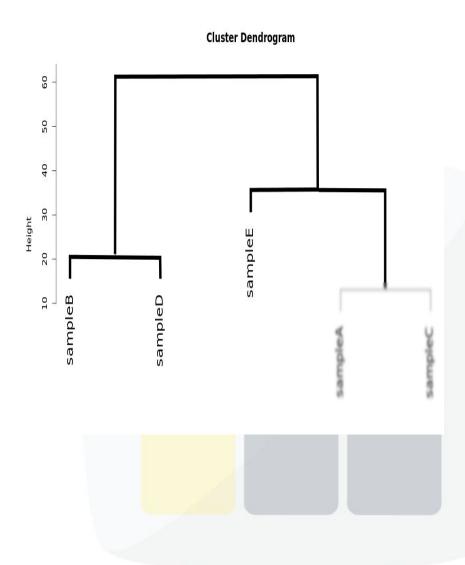




2 SOTA

- SOTA starts the classification with a binary topology composed of a root node with two leaves.
- A divisive (top down) method.
- The self-organizing process splits the data (e.g. samples) into two clusters.
- After reaching convergence at this level, the network is inspected.
- If the level of variability in one, or more, terminal nodes is over a given threshold, then, the tree grows by expanding these terminal nodes. Provides a tree.



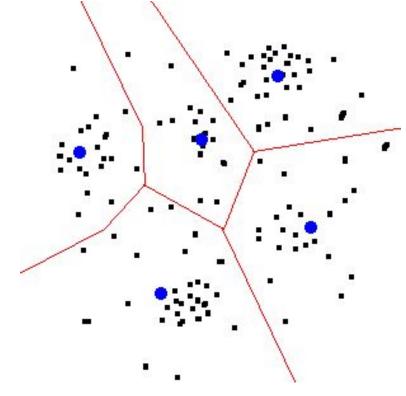


2 K-Means

- K-means aims to partition n observations into k clusters in which each observation belongs to the cluster with the nearest mean.
- Do not provide a tree.
- Usually need the number of cluster to be set.

Its result is very sensitive to the initialization step: choosing initial

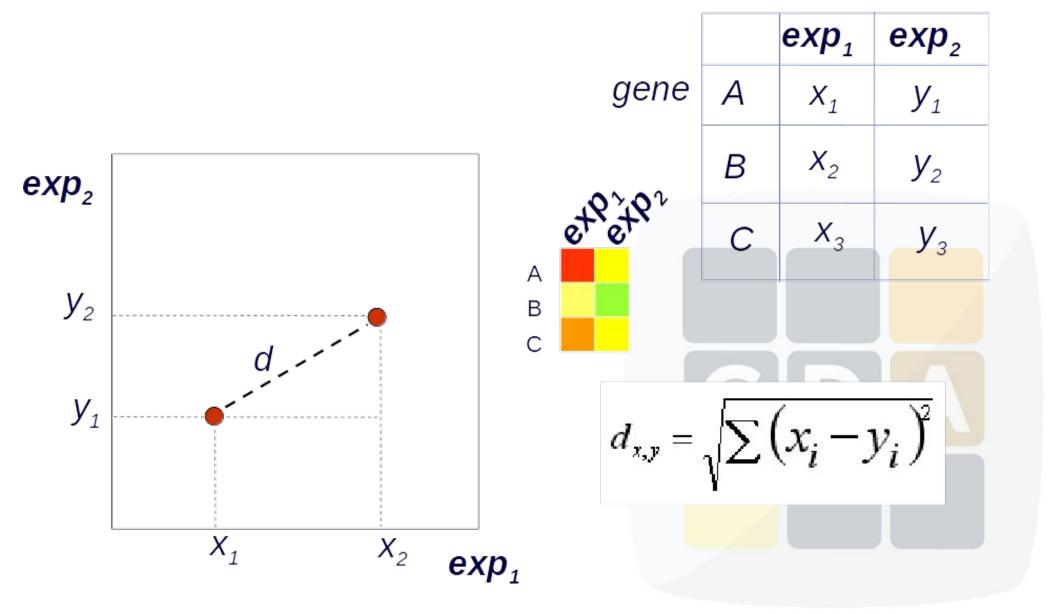
cluster centers.



Outline

- 1. Introduction
- 2. Clustering methods
- 3. Distance parameters
- 4. Exercises on Babelomics

Euclidean distance



Correlation distance

Based in correlation coefficients. Looks for similar patterns across individuals.

The correlation coefficient between n pairs of observations, whose values are (x_i, y_i) is:

Pearson Correlation Coefficient

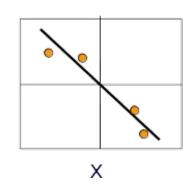
 S_{v} = Standard deviation of x

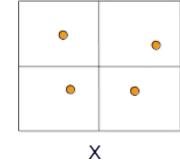
 S_y = Standard deviation of y

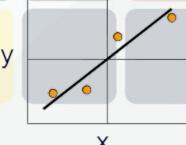
$$\frac{1}{n-1} \sum_{i=1}^{n} \left(\frac{x_i - \overline{x}}{S_x} \right) \left(\frac{y_i - \overline{y}}{S_y} \right)$$

The linear correlation coefficient measures the strength of the linear relationships between the paired x and y values in a sample.

- 1

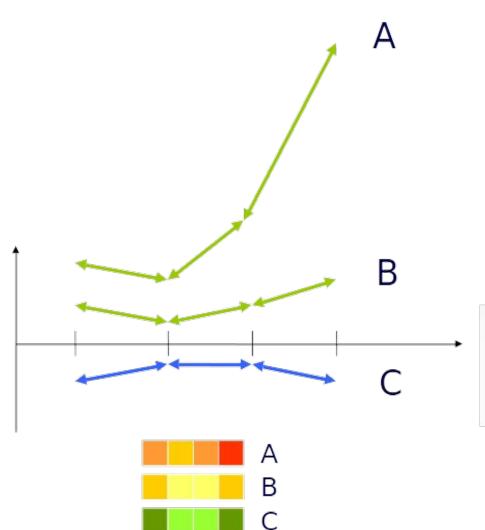






Differences between distances

Differences (euclidean)



$$d_{x,y} = \sqrt{\sum (x_i - y_i)^2}$$

B ~ C

Correlation

Pearson Correlation Coefficient

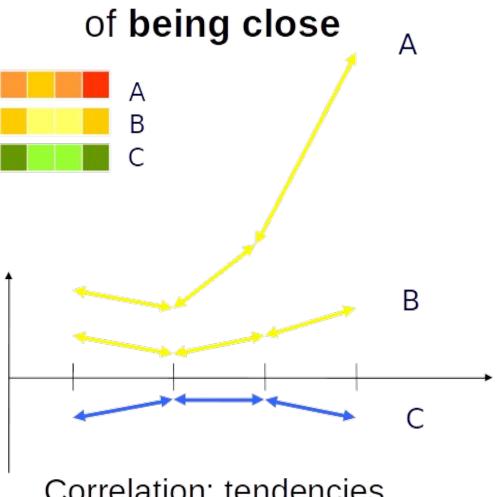
 S_x = Standard deviation of x

$$S_y$$
 = Standard deviation of y

$$\frac{1}{n-1} \sum_{i=1}^{n} \left(\frac{x_i - \overline{x}}{S_x} \right) \left(\frac{y_i - \overline{y}}{S_y} \right)$$

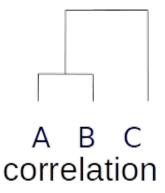
Differences between distances

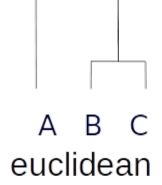
Different definitions



Correlation: tendencies

Euclidean: global similarity





Distances in Babelomics

Different distances account for different properties:

- 1. Euclidean
 - Normal
 - Squared
- 2. Correlation coefficient
 - Spearman
 - Pearson

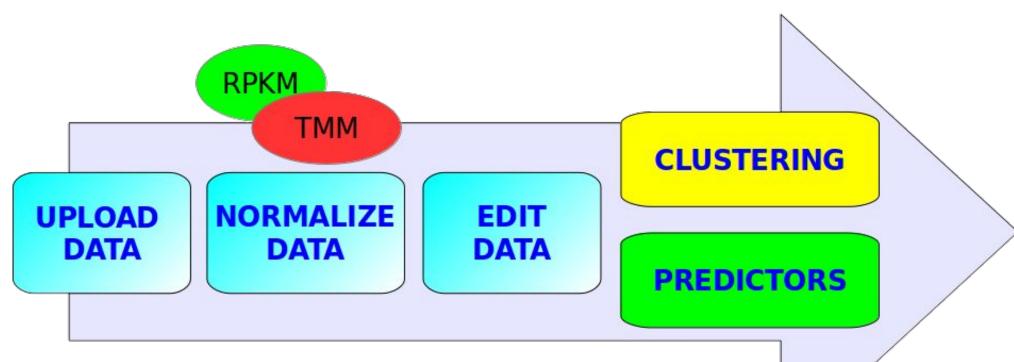
3 Any questions?

Outline

- 1. Introduction
- 2. Clustering methods
- 3. Distance parameters
- 4. Exercises on Babelomics

4

Exercises on Babelomics



#NAMES	k1	k2	k3	k4	k5	11	12	13	.14	15
TSPAN6	203	198	194	176	202	157	190	200	201	208
TNMD	0	0	0	1	0	0	0	0	0	0
DPM1	66	85	89	82	80	37	50	50	47	40
SCYL3	21	30	31	27	31	28	31	37	15	21
Clorf112	10	12	8	11	18	17	22	12	12	19
FOR	19	28	18	20	10	47	50	43	49	48
FUCA2	240	272	261	256	211	76	82	85	68	83
GCLC	98	100	84	94	86	354	362	373	369	326
NFYA	59	61	53	56	59	59	66	63	66	62
STPG1	34	43	41	31	46	6	7	7	8	7

